img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (6): 930-943.doi: 10.11872/j.issn.1005-2518.2023.06.077

• 采选技术与矿山管理 • 上一篇    下一篇

露天台阶水介质间隔装药结构优选及对比试验研究

费鸿禄(),纪海楠(),山杰   

  1. 辽宁工程技术大学爆破技术研究院,辽宁 阜新 123000
  • 收稿日期:2023-05-22 修回日期:2023-07-28 出版日期:2023-12-31 发布日期:2024-01-26
  • 通讯作者: 纪海楠 E-mail:feihonglu@163.com;13700879015@163.com
  • 作者简介:费鸿禄(1963-),男,辽宁阜新人,教授,博士生导师,从事爆破工程科研与教学工作。feihonglu@163.com

Optimization and Comparative Experimental Study of Charge Structure of Water Medium Interval on Open-air Step

Honglu FEI(),Hainan JI(),Jie SHAN   

  1. Blasting Technology Research Institute of Liaoning University of Engineering and Technology,Fuxin 123000,Liaoning,China
  • Received:2023-05-22 Revised:2023-07-28 Online:2023-12-31 Published:2024-01-26
  • Contact: Hainan JI E-mail:feihonglu@163.com;13700879015@163.com

摘要:

针对露天台阶剥离爆破块度大、根底多等不良爆破效果,采用炮孔底部与中部两段水介质间隔装药结构进行露天台阶爆破效果优化。从理论上分析了空气介质与水介质间隔装药爆破的炮孔压力,通过试验优化了水介质间隔装药结构的单耗,在选定的最优单耗基础上利用ANSYS/LS-DYNA数值仿真软件,建立3组不同水介质间隔装药结构的三维模型,通过分析得到最优的水介质间隔装药结构,并与空气介质间隔装药结构进行爆破对比试验。结果表明:水介质间隔装药结构爆破可以显著提高炮孔压力,从而改善岩石破碎效果;上、下部水介质间隔均为1 m的装药结构爆破作用于岩体的应力更大且持续时间长,其爆破效果最优;优选的水介质间隔装药结构块度指标均表现出良好的占比情况。研究结果能够为水介质间隔装药结构露天台阶爆破提供参考。

关键词: 装药结构, 数值模拟, 水介质间隔, 露天台阶, 块度分析, 爆破效果

Abstract:

Aiming at the unfavorable blasting effects of the open-air step stripping blasting,such as large blocks and many root bottoms,the blasting effect of the open-air step was optimized by adopting the two-stage charge structure of water medium interval at the bottom of the blast hole and the middle part.To obtain the optimal two-stage charge structure of water medium interval in step stripping blasting of the open-pit mine,the blast hole pressure of the air-medium and water-medium interval charging were discussed from theoretical analysis,the unit consumption of water medium interval charge structure in Wujiata open-pit mine was optimized by experiments.On the basis of the selected optimal unit consumption,three groups of three-dimensional models of different water medium interval charge structure were established by using ANSYS/LS-DYNA numerical simu-lation software.The optimal water medium interval charge structure was selected by analyzing the stress change curve of rock mass,rock mass damage range,and free surface tensile crack area ratio at the bottom of the blast hole,the middle of the lower charge,and the upper position of the blast hole.The blasting effect was evaluated from the index of boulder yield by the blasting comparative experimental with the charge structure of air medium interval.The research results show that blasting with a charge structure of a water medium interval can significantly increase the blasting pressure and improve the rock-crushing effect.The optimal unit consumption of water medium interval charge structure blasting in Wujiata open-pit mine is 0.33~0.34 kg/m3,saving 0.03~0.04 kg/m3 unit consumption of explosives than before. The blasting of a charge structure with an upper water medium interval of 1 m and the lower water medium interval of 1 m has more stress on the rock mass and has a long duration,the damage is evenly distributed along the blast hole,the range is regular,and the free surface tensile crack area accounts for the highest proportion,and its blasting effect optimal.The blasting fragmentation indexes of the optimal water medium interval charge structure all show a good proportion.The research results can provide a reference for the application of water medium interval charge structure in open-pit step blasting.

Key words: charge structure, numerical simulation, water medium interval, open-air step, fragmentation analy-sis, blasting effect

中图分类号: 

  • TD235

图1

不同耦合介质的炮孔压力"

表1

炸药单耗优化分析"

组别装药结构炸药单耗/(kg·m-3爆破效果
70 cm以上块度占比/%爆堆抛掷距离/m
对照组炸药(5.5 m)—空气(1.5 m)—炸药(2.5 m)—填塞(3.5 m)0.3713.225.0
试验组1炸药(5.4 m)—水(1.6 m)—炸药(2.5 m)—填塞(3.5 m)0.364.228.0
试验组2炸药(5.2 m)—水(1.8 m)—炸药(2.5 m)—填塞(3.5 m)0.357.526.5
试验组3炸药(5.0 m)—水(2.0 m)—炸药(2.5 m)—填塞(3.5 m)0.349.525.8
试验组4炸药(4.8 m)—水(2.2 m)—炸药(2.5 m)—填塞(3.5 m)0.3315.523.3

图2

两段水介质装药结构示意图"

图3

试验组3的爆堆块度测量和爆破效果"

图4

不同装药结构二分之一数值模型"

图5

RHT模型极限面"

图6

脆性多孔材料压缩过程"

图7

RHT本构模型"

表2

岩体模型参数"

参数名称数值参数名称数值
密度ρ/(kg?m-32 400拉压强度比Ft*0.09
剪切模量/GPa26.7剪压强度比Fs*0.21
单轴抗压强度fc/MPa49Hugoniot多项式参数A1/GPa30.27
剪切模量缩减系数ξ0.5Hugoniot多项式参数A2/GPa48.59
状态方程参数T1/GPa25.45Hugoniot多项式参数A3/GPa31.04
状态方程参数B01.22拉压子午比参数Q00.6805
状态方程参数B11.22罗德角相关系数B0.0105
压实压力Plock/GPa6失效面参数A2.1
压碎压力Pcrush/MPa20.2失效面指数N0.637
拉伸应变率指数βt0.0115压缩应变率指数βc0.0083
压缩屈服面参数Gc*0.4残余应力强度参数Af1.61
拉伸屈服面参数Gt*0.7残余应力强度指数Nf0.6
损伤参数D10.04损伤参数D21
初始孔隙度α01.08孔隙度指数Np3

表3

炸药材料及状态方程参数"

参数数值参数数值
密度ρ/(kg·m-3850R13.91
损伤参数D/(m·s-13 000R21.52
爆压P/GPa5.15ω0.33
A/GPa494s/(J·m-32.48×109
B/GPa1.89V1

表4

填塞材料模型参数"

参数数值参数数值
密度ρ/(kg·m-32 130μ0.27
初始内能E/MPa10.4σ/MPa0.7

表5

水材料及状态方程参数"

参数数值参数数值
ρ0/(kg·m-31 000γ00.5
C1 480α1.3937
S11.89E256
S23.91V1.0
S31.52

图8

不同装药结构应力云图"

图9

不同装药结构各单元等效应力时程曲线"

图10

岩体内部损伤"

图11

不同装药结构自由面拉伸裂纹"

表6

不同装药结构自由面拉伸裂纹面积占比"

装药结构自由面拉伸裂纹面积占比/%
18.39
20.77
20.35

图12

不同爆区示意图"

图13

间隔水袋实物图"

表7

对比试验爆破参数"

间隔介质炸药单耗/(kg·m-3炮孔直径/mm台阶高度/m排距/m孔距/m超深/m布孔方式延期时间
0.3417012571梅花形孔间45 ms,排间124 ms
空气0.3717012571梅花形孔间45 ms,排间124 ms

图14

空气介质间隔装药结构爆破后爆堆块度分析图"

图15

水介质间隔装药结构爆破后爆堆块度分析图"

图16

空气介质间隔装药结构爆破后爆堆块度数据处理图"

图17

水介质间隔装药结构爆破后爆堆块度数据处理图"

表8

空气介质和水介质间隔装药爆破块度分布"

参数空气介质间隔装药爆破块度分布/%水介质间隔装药爆破块度分布/%
<10 cm10~30 cm30~50 cm50~70 cm>70 cm<10 cm10~30 cm30~50 cm50~70 cm>70 cm
平均值18.2025.9825.2617.2113.3515.5433.0227.4218.795.23
图片A占比19.7027.9822.7316.2813.3115.4435.1827.1817.594.61
图片B占比16.7023.9727.8018.1313.4015.6530.8627.6519.985.86
Esen S, Onederra I, Bilgin H A,2003.Modelling the size of the crushed zone around a blasthole[J].International Journal of Rock Mechanics and Mining Sciences,40(4):485-495.
Fei Honglu, Liu Yu, Qian Qifei,et al,2020.Distribution of blasthole fracture in eccentric charge under in-situ stress[J].Gold Science and Technology,28(2):228-237.
Jang H, Handel D, Ko Y,et al,2018. Effects of water deck on rock blasting performance[J].International Journal of Rock Mechanics and Mining Sciences,112:77-83.
Kuang Zhiping, Yuan Xunkang,2012.The analysis and simulation for the strength parameters of RHT concrete model[J].Chinese Quarterly of Mechanics,33(1):158-163.
Li J C, Gao W X, Zhang S H,et al,2021.Numerical analysis and application of uncoupled coefficient of water sealed blasting on blasting effect[J].IOP Conference Series:Earth and Environmental Science,719(3):032035.
Li Qi, Wang Gaohui, Lu Wenbo,et al,2016.Influence of water level on the antiknock safety performance of concrete gravity dam[J].Journal of Vibration and Shock,35(14):19-26.
Li Wenjun, Zhang Xiaohua, Ke Sheng,et al,2018.Application research of blasting dust reduction technology in open-pit limestone mine[J].Engineering Blasting,24(5):72-77.
Liang Xiangqian,2013.Underwater Blasting Technology[M].Beijing:Chemical Industry Press.
Liu Jiangchao, Gao Wenxue, Wang Lintai,et al,2020.Numerical analysis on the charge structure optimization under hydraulic blasting and its application[J].Journal of Vibration and Shock,39(9):57-62.
Liu Jiangchao, Gao Wenxue, Zhang Shenghui,2021.Selection and optimization of charge structure of surrounding holes in tunnel excavating blasting[J].Blasting,38(3):38-44.
Lou Xiaoming, Wang Zhenchang, Chen Bigang,et al,2017.Initial shock pressure analysis for hole wall with air-decked charge[J].Journal of China Coal Society,42(11):2874-2883.
Riedel W, Thoma K, Hiermaier S,et al,1999.Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of 9th International Symposium on Interaction of the Effects of Munitions with Structures,May 03-07,1999,Berlin-Strausberg.
Wang H, Wang Z, Wang J,et al,2021.Effect of confining pressure on damage accumulation of rock under repeated blast loading[J].International Journal of Impact Engineering,(3):103961.
Wang Yijun, Pan Weihua, Yao Wenhui,et al,2020.Experimental study on new hydraulic blasting dust removal technology[J].Tunnel Construction,40(9):1360-1367.
Wang Yutao,2015.The Study of the Broken Model for Rock Mass Blasting Based on RHT Constitutive Equations[D].Beijing:China University of Mining and Technology(Beijing).
Wescott B L, Stewart D S, Davis W C,2005.Equation of state and reaction rate for condensed-phase explosives[J].Journal of Applied Physics,98(5):053514.1.
Xie Feng, Jiang Yaqin, Yu Deyun,et al,2020.Test and application of calcium conglomerate air-decked charge blasting[J].Blasting,37(4):63-68.
Xie L X, Lu W B, Zhang Q B,et al,2017.Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J].Tunnelling and Underground Space,66:19-33.
Xu Ying, Zong Qi,2000.Theoretical analysis on the parameters of smooth blasting soft mat layer charging construction[J].Journal of China Coal Society,(6):610-613.
Yin Z M, Wang X G, Wang D S,et al,2021.Analysis and application of stress distribution in 24-m high bench loosening blasting with axially uncoupled charge structure in Barun open-pit mine[J].IOP Conference Series:Earth and Environmental Science,804(2):022059.
Yuan W W, Su W, Wen X,et al,2019.Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress[J].International Journal of Rock Mechanics and Mining Sciences,124(C):104133.
Zhang Wenming, Wang Haibo, Li Wanfeng,et al,2023.Numerical simulation on rock breaking effect of circular shaped charge structure blasting[J].Science Technology and Engineering,23(25):10756-10763.
Zhu Hongbing, Lu Wenbo, Wu Liang,2007.Research on mechanism of air-decking technique in bench blasting[J].Rock and Soil Mechanics,28(5):986-990.
Zhu Qiang, Chen Ming, Zheng Bingxu,et al,2016.Distribution and control technology of rock damage induced by air-deck charge presplitting blasting[J].Chinese Journal of Rock Mechanics and Engineering,35(Supp.1):2758-2765.
Zuo Jinjing, Yang Renshu, Gong Min,et al,2023.On the distribution of explosion strain field and fracture field in segment charge[J].Explosion and Shock Waves,43(3):169-180.
费鸿禄,刘雨,钱起飞,等,2020.地应力作用下偏心装药的炮孔裂隙分布[J].黄金科学技术,28(2):228-237.
匡志平,袁训康,2012.RHT混凝土本构模型强度参数分析与模拟[J].力学季刊,33(1):158-163.
李麒,王高辉,卢文波,等,2016.库前水位对混凝土重力坝抗爆安全性能的影响[J].振动与冲击,35(14):19-26.
李文军,张晓华,柯升,等,2018.露天石灰石矿山爆破降尘技术应用研究[J].工程爆破,24(5):72-77.
梁向前,2013.水下爆破技术[M].北京:化学工业出版社.
刘江超,高文学,王林台,等,2020.水封爆破装药结构优化数值分析及其应用[J].振动与冲击,39(9):57-62.
刘江超,高文学,张声辉,2021.隧道掘进周边孔间隔装药结构选取及优化[J].爆破,38(3):38-44.
楼晓明,王振昌,陈必港,等,2017.空气间隔装药孔壁初始冲击压力分析[J].煤炭学报,42(11):2874-2883.
王轶君,潘卫华,姚文辉,等,2020.新型水封爆破除尘技术试验研究[J].隧道建设,40(9):1360-1367.
王宇涛,2015.基于RHT本构的岩体爆破破碎模型研究[D].北京:中国矿业大学(北京).
谢烽,江雅勤,余德运,等,2020.钙结砾岩空气间隔装药爆破试验及应用[J].爆破,37(4):63-68.
徐颖,宗琦,2000.光面爆破软垫层装药结构参数理论分析[J].煤炭学报,(6):610-613.
张文明,汪海波,李万峰,等,2023.圆弧形聚能装药结构爆破破岩效果数值模拟[J].科学技术与工程,23(25):10756-10763.
朱红兵,卢文波,吴亮,2007.空气间隔装药爆破机理研究[J].岩土力学,28(5):986-990.
朱强,陈明,郑炳旭,等,2016.空气间隔装药预裂爆破岩体损伤分布特征及控制技术[J].岩石力学与工程学报,35(增1):2758-2765.
左进京,杨仁树,龚敏,等,2023.分段装药爆炸应变场与裂隙场分布规律[J].爆破与冲击,43(3):169-180.
[1] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[2] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[3] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[4] 甘会莲, 蒋新闻, 陈志伟, 乔永昕, 陈淑华, 王建国. 一体化聚能水压爆破技术在软弱围岩隧道的应用[J]. 黄金科学技术, 2023, 31(6): 944-952.
[5] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[6] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[7] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[8] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[9] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[10] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[11] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[12] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[13] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[14] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[15] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .