黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 592-604.doi: 10.11872/j.issn.1005-2518.2023.04.010
Yanan ZHAO1(),Yihang ZHAO1,Zhongming JIANG2(),Hongmin ZHAO1
摘要:
核废料储罐是核废料处理工程屏障的核心部分,其静动力学稳定性至关重要。基于碳化硅材料的核废料储罐,考虑深部岩石—储罐的相互作用特点,采用试验与模拟相结合的方法开展研究。首先对碳化硅的抗拉强度特征进行了研究,分析了深埋条件下的储罐受力特点和规律;其次,研究了自由落体与岩石撞击条件下储罐的动态受力规律和基本破坏形式,并考虑岩石破碎所带来的影响。结果显示:碳化硅是相对脆性材料,其抗拉强度存在一定变化区间;在深埋条件下,埋深、水平与竖向地应力比对储罐受力有较大的影响;运输时自由跌落的高度和倾角对储罐局部集中拉应力有较大的影响;岩石撞击时储罐内的拉应力受岩石质量和撞击发生时岩石—储罐接触类型的控制,考虑岩石撞击破碎会大幅削弱撞击附加应力,岩块间黏聚力和内摩擦角越大,岩石撞击力也越大,岩块间抗拉强度对撞击力的影响相对较小。虽然在自由跌落与岩石撞击的工况下会发生局部破坏,但通过外附一定厚度缓冲层并合理安置,可保证储罐的静动力稳定性。
中图分类号:
Björkbacka Å, Hosseinpour S, Johnson M,et al,2013.Radiation induced corrosion of copper for spent nuclear fuel storage[J].Radiation Physics and Chemistry,92:80-86. | |
Börgesson L, Chijimatsu M, Fujita T,et al,2001.Thermo-hydro-mechanical characterisation of a bentonite-based buffer material by laboratory tests and numerical back analyses[J].International Journal of Rock Mechanics and Mining Sciences,38(1):95-104. | |
Ghazvinian E, Diederichs M S, Quey R,2014.3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing[J].Journal of Rock Mechanics and Geotechnical Engineering,6:506-521. | |
Haslam J J, Farmer J C, Hopper R W,et al,2005.Ceramic coatings for a corrosion-resistant nuclear waste container evaluated in simulated ground water at 90 ℃[J].Metallurgical and Materials Transactions,A(36): 1085-1095. | |
Hennig T, Stockmann M, Kühn M,2020.Simulation of diffusive uranium transport and sorption processes in the opalinus clay[J].Applied Geochemistry,123:104777. | |
Hou Huiming, Hu Dawei, Zhou Hui,et al,2019.Thermo-hydro-mechanical coupling simulation method of surrounding rock in high-level radioactive waste repository considering effective meso-thermal parameters[J].Rock and Soil Mechanics,40(9):3625-3634. | |
Itasca Consulting Group,2016.3DEC Manuals[M].Minneapolis:Itasca Consulting Group. | |
Jiao Y Y, Fan S C, Zhao J,2005.Numerical investigation of joint effect on shock wave propagation in jointed rock masses[J].Journal of Testing and Evaluation,33(3):1-7. | |
Lay L A,1983.Corrosion Resistance of Technical Ceramics[M].Teddington:Middlesex Her Majesty’s Stationery Office. | |
Lee M S, Lee J Y, Choi H J,et al,2018.Evaluation of silicon carbide (SiC) for deep borehole disposal canister [J].Journal of the Nuclear Fuel Cycle and Waste Technology,16(2):233-242. | |
Lee M Y, Brannon R M, Bronowski D R,2004.Uniaxial and triaxial compression tests of silicon carbide ceramics under quasi-static loading condition[R].Albuquerque:Sandia National Laboratory. | |
McEachern D W, Wu W, Venneri F,2012.Performance of PyC,SiC and ZrC coatings in the geologic repository [J].Nuclear Engineering and Design,251:102-110. | |
Metz V, Geckeis H, González-Robles E,et al,2012.Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel[J].Radiochimica Acta,100:699-713. | |
Nasir O, Nguyen T S, Barnichon J D,et al,2017.Simulation of the hydromechanical behaviour of bentonite seals for the containment of radioactive wastes[J].Canadian Geotechnical Journal,54(8):1055-1070. | |
Onofrei M, Raine D K, Brown L,et al,1984.Leaching studies of nonmetallic materials for nuclear fuel immobilization containers[C]//Proceedings of Materials Research Society Sy-mposium.Boston:Materials Research Society. | |
Sellin P, Leupin O X,2013.The use of clay as an engineered barrier in radioactive-waste management—A review[J].Clays and Clay Minerals,61:477-498. | |
Soroka I, Chae N, Jonsson M,2021.On the mechanism of γ-radiation-induced corrosion of copper in water[J].Corrosion Science,182:109279. | |
Wang J,2010.High-level radioactive waste disposal in China: Update 2010[J].Journal of Rock Mechanics and Geotechnical Engineering,2:1-11. | |
Wang Jianguo, Liang Shufeng, Gao Quanchen,et al,2018.Experimental study of jointed angles impact on energy transfer characteristics of simulated rock material[J].Journal of Central South University(Science and Technology),49(5):1237-1243. | |
Xu Tao,2019.THM Coupling Process in Unsaturated Bentonite Buffer Material with Construction Joints and Self-Healing Effects[D].Beijing:Beijing Jiaotong University. | |
Xu Xun,2021.Hydro-Thermal Evolution Law of Double-Layer Buffer in High-Level Radioactive Waste Repository[D].Yichang:China Three Gorges University. | |
Zhao Yiwei, Wu Zhijun, Wang Xuhong,et al,2021.Numerical analysis of multi-field coupling of barrier system in deep geological repository for high-level radioactive waste[J].Journal of Central South University(Science and Technology),52(8):2557-2571. | |
侯会明,胡大伟,周辉,等,2019.考虑细观等效热学参数的高放废物处置库围岩应力—渗流—温度耦合模拟方法[J].岩土力学,40(9):3625-3634. | |
王建国,梁书锋,高全臣,等,2018.节理倾角对类岩石冲击能量传递影响的试验研究[J].中南大学学报(自然科学版),49(5):1237-1243. | |
许韬,2019.含施工接缝的非饱和膨润土缓冲材料热—水—力耦合过程及愈合效应[D].北京:北京交通大学. | |
许迅,2021.高放废物处置库双层缓冲层水—热演化规律[D].宜昌:三峡大学. | |
赵艺伟,吴志军,王旭宏,等,2021.高放废物深地质处置库屏障系统的多场耦合数值分析[J].中南大学学报(自然科学版),52(8):2557-2571. |
[1] | 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112. |
[2] | 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752. |
[3] | 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763. |
[4] | 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622. |
[5] | 李明兼,尹土兵,谭小松,杨政. 基于离散元的花岗岩热敏感性及裂纹扩展研究[J]. 黄金科学技术, 2022, 30(4): 559-573. |
[6] | 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448. |
[7] | 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426. |
[8] | 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365. |
[9] | 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84. |
[10] | 曾强,黄小荣,王晓军,陈青林,刘健,龚囱. 不同埋深灰岩岩爆倾向性及声发射特征试验研究[J]. 黄金科学技术, 2021, 29(6): 863-873. |
[11] | 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853. |
[12] | 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833. |
[13] | 赵国彦,党成凯,刘焕新,刘洋,肖屈日,李洋,陈立强,毛文杰. 基于距离判别分析的矿山岩爆倾向性评价[J]. 黄金科学技术, 2021, 29(5): 690-697. |
[14] | 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708. |
[15] | 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544. |
|