img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 592-604.doi: 10.11872/j.issn.1005-2518.2023.04.010

• 采选技术与矿山管理 • 上一篇    下一篇

基于离散元法的高放核废料储罐静动力稳定性初步研究

赵亚楠1(),赵一航1,蒋中明2(),赵红敏1   

  1. 1.中国电建集团中南勘测设计研究院有限公司,湖南 长沙 410019
    2.长沙理工大学水利与环境工程学院,湖南 长沙 410114
  • 收稿日期:2022-12-17 修回日期:2023-04-06 出版日期:2023-08-30 发布日期:2023-09-20
  • 通讯作者: 蒋中明 E-mail:izolt@163.com;zzmmjiang@163.com
  • 作者简介:赵亚楠(1991-),男,山东郯城人,工程师,从事岩土工程、水利水电及流体灾变的研究工作。izolt@163.com
  • 基金资助:
    国家自然科学基金项目“压缩空气储能地下储气库FRP密封结构界面失效机理与设计方法研究”(52178381)

Preliminary Study on Static and Dynamic Stability of Canister for High-level Radioactive Nuclear Waste Disposal Based on Discrete Element Method

Yanan ZHAO1(),Yihang ZHAO1,Zhongming JIANG2(),Hongmin ZHAO1   

  1. 1.Zhongnan Engineering Co. , Ltd. , Power China, Changsha 410019, Hunan, China
    2.School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
  • Received:2022-12-17 Revised:2023-04-06 Online:2023-08-30 Published:2023-09-20
  • Contact: Zhongming JIANG E-mail:izolt@163.com;zzmmjiang@163.com

摘要:

核废料储罐是核废料处理工程屏障的核心部分,其静动力学稳定性至关重要。基于碳化硅材料的核废料储罐,考虑深部岩石—储罐的相互作用特点,采用试验与模拟相结合的方法开展研究。首先对碳化硅的抗拉强度特征进行了研究,分析了深埋条件下的储罐受力特点和规律;其次,研究了自由落体与岩石撞击条件下储罐的动态受力规律和基本破坏形式,并考虑岩石破碎所带来的影响。结果显示:碳化硅是相对脆性材料,其抗拉强度存在一定变化区间;在深埋条件下,埋深、水平与竖向地应力比对储罐受力有较大的影响;运输时自由跌落的高度和倾角对储罐局部集中拉应力有较大的影响;岩石撞击时储罐内的拉应力受岩石质量和撞击发生时岩石—储罐接触类型的控制,考虑岩石撞击破碎会大幅削弱撞击附加应力,岩块间黏聚力和内摩擦角越大,岩石撞击力也越大,岩块间抗拉强度对撞击力的影响相对较小。虽然在自由跌落与岩石撞击的工况下会发生局部破坏,但通过外附一定厚度缓冲层并合理安置,可保证储罐的静动力稳定性。

关键词: 岩石力学, 核废料处置, 离散元, 地质封存, 数值模拟, 储罐—岩石作用

Abstract:

Canister for high-level radioactive waste is a core part in nuclear waste disposal barrier,and its static and dynamic stability during transportation,installation,and deep buried operation is of great importance.A silicon carbide(SiC) material based canister was proposed in this paper.The material has remarkable chemical stability,but its brittleness may be the key to restrict it application.In oder to investigate the static and dynamic stability of this canister,series of numerical simulations were performed using discrete element method,considering the physical nature of rock blocks and characteristics of interactions between rock and canister.The tensile strength characteristics of SiC was first investigated via specially designed lab and numerical tests.Comparison with analytical results has proved the reliability of adopted numerical method.The influence of disposal depth and horizontal to vertical stress ratio was then investigated.The dynamic loading behaviour pattern and basic failure mode of canister under free fall and rock impact were investigated,and the influence of rock fragmentation was mainly considered.The results show that the silicon carbide material is relatively brittle,with tested tensile strength between 150 MPa and 200 MPa,compared to its very high compressive strength.The tensile strength of silicon carbide was chosen 150 MPa for safety reason in later analysis.However,this value of 150 MPa is higher than the tensile or even compressive strength of ordinary rocks.The canister can survive under 1 200 m depth,horizontal to vertical stress ratio of 3 with several disposal inclination angles.Under free fall,the maximum tensile stress in canister is determined by falling height and inclination angle.Upon rock fall without rock splitting,the maximum tensile stress in canister is determined by rock weight and contact type between rock and canister.Inclusion of rock splitting in model calculation can produce stress much lower than by traditional continuum method.The tip of the rock will crack first once the rock is hitting the canister,leaving the canister safe in the first place,which is different from that in continuum analysis.This implies the energy dissipation between rock blocks due to fracturing of rock during rock impact is not negligible.As the cohesion and residual friction angle between rock blocks increase,the stress induced in canister also increases,while the tension makes limited contribution to elevated stress.Another interesting finding is that as the rock block volume ratio gets smaller,the stress induced by impacting rock decreases first but then keeps to a constant value once certain threshold is reached.This suggests by reaching certain rock block volume ratio may be enough to reproduce dynamic impact-induced cracking,instead of decreasing rock block size constantly.Although local failure is expected under dynamic impact,a soft buffer layer with certain thickness outside the canister can guarantee static and dynamic stability of SiC canister together with appropriate emplacement.

Key words: rock mechanics, nuclear waste disposal, discrete element method(DEM), geological disposal, numerical simulation, canister-rock interaction

中图分类号: 

  • TU9

表1

碳化硅化学性质(Lay,1983)"

化学条件化学性质
惰性气体,还原氛围2 320 °C以下稳定
氧化氛围1 000 °C 以上形成二氧化硅层,1 650 °C以下稳定
氢气1 430 °C以下稳定,1 430 °C 以上重侵蚀
水蒸气1 150 °C以下稳定,1 150 °C 以上少量反应
盐酸、硫酸、氢氟酸煮沸不受侵蚀
浓磷酸230 °C以上出现侵蚀
熔融氢氧化钠和氢氧化钾500 °C以上重侵蚀
熔融碳酸钠900 °C以上重侵蚀

图1

碳化硅空心圆柱压缩试验(a)空心圆柱上下两端最小主应力(Pa)(拉为正)在接近抗拉强度150 MPa时发生破坏(对应图1c黑色虚线);(b)空心圆柱在上下侧发生拉伸破坏,红色图例代表未发生拉伸破坏,绿色图例代表已发生且仍在发生拉伸破坏,蓝色图例代表已发生拉伸破坏;(c)碳化硅空心圆柱压缩试验的位移—荷载曲线,实线为试验结果,虚线分别为不同抗拉强度下的数值模拟结果"

表2

碳化硅模型参数"

参数数值参数数值
内摩擦角φ/(°)40剪胀角f/ (°)0
抗拉强度Ts/MPa150~200弹性模量E/GPa415
密度ρ/(kg·cm-33.1泊松比μ0.15
黏聚力C/GPa4

图2

破坏荷载的数值解与解析解(R=2.5 cm,Ts=150 MPa)"

图3

储罐截面形式"

表3

储罐几何参数"

储罐类型L1L2L3L4L5L6
高温气冷式反应堆/H储罐62305923351515
重水铀反应堆/C储罐1025101425502020
固化核废料/V储罐4501 3505001 4002525

表4

数值模拟计算的材料基本参数"

材料密度/ (kg·m-3弹性模量E/GPa泊松比μ
碳化硅3 1004150.150
缓冲层9000.0080.333
防护层2 0001.3500.270
基座2 500700.210
岩石2 500470.300

表5

数值模拟计算的岩块间接触参数"

岩石

法向接触刚度

/(TPa·m-1

切向接触刚度 /(TPa·m-1接触间黏 聚力/MPa接触抗拉 强度/MPa接触内摩 擦角/(°)残余接触黏 聚力/MPa残余接触抗拉 强度/MPa残余接触内摩 擦角/(°)
R175.0025.00401000027
R243.204.3215400027

表6

不同地应力与地应力比组合"

荷载X/MPaY/MPaZ/MPaX/Z
11010101
22010102
33010103
42020102
53020103
63030103

图4

不同倾角和地应力条件下储罐内的最大拉应力注:图例中数字代表X、Y、Z方向地应力组合,依次为:1-(10 MPa,10 MPa,10 MPa);2-(20 MPa,10 MPa,10 MPa);3-(30 MPa,10 MPa,10 MPa);4-(20 MPa,20 MPa,10 MPa);5-(30 MPa,20 MPa,10 MPa);6-(30 MPa,30 MPa,10 MPa)"

图5

储罐的应力分布(a)V储罐,X、Y、Z方向的地应力组合为(10 MPa,10 MPa,10 MPa),倾角为90°;(b)H储罐,X、Y、Z方向的地应力组合为(30 MPa,30 MPa,10 MPa),倾角为60°"

图6

多层屏障系统与防护层对最大拉应力的影响(a)多层屏障系统(外:围岩;中:防护层;内:储罐);(b)设置与不设置防护层条件下的最大拉应力注:图例中数字代表X、Y、Z方向地应力组合,依次为:1-(10 MPa,10 MPa,10 MPa);2-(20 MPa,10 MPa,10 MPa);3-(30 MPa,10 MPa,"

图7

自由跌落示意图"

图8

不同跌落高度和倾角条件下储罐内部的最大拉应力"

图9

V储罐剖面"

图10

不同撞击工况和岩石质量条件下储罐最大拉应力注:图10(b)中的A、B、C、D图例分别代表图10(a)中的A、B、C、D 4种撞击工况"

图11

离散元模拟的单轴抗压强度应力—应变曲线与相应的岩石破坏剖面情况"

图12

岩块间接触参数对单轴抗压强度的影响(a)岩块间抗拉强度对单轴抗压强度的影响;(b)岩块间内摩擦角对单轴抗压强度的影响;(c)岩块间黏聚力对单轴抗压强度的影响"

图13

岩石的撞击破坏(a)工况A的撞击时程曲线;(b)工况A的岩石破坏情况;(c)工况D的岩石破坏情况"

图14

岩块间接触参数对最大拉应力的影响(a)岩块间抗拉强度与撞击最大拉应力的关系;(b)岩块间黏聚力与撞击最大拉应力的关系;(c)岩块间内摩擦角与撞击最大拉应力的关系;虚线为不考虑岩石破坏的结果"

图15

岩块体积比与撞击最大拉应力的关系"

表7

缓冲层的变形量与储罐的最大拉应力"

岩石质量/kg不同厚度和弹性模量缓冲层条件下的变形量和最大拉应力
D=20 mm,E=800 MPaD=20 mm,E=80 MPaD=80 mm,E=100 MPa
84.85 mm/129.3 MPa11.67 mm/70.7 MPa-
40--17.15 mm/70.6 MPa
Björkbacka Å, Hosseinpour S, Johnson M,et al,2013.Radiation induced corrosion of copper for spent nuclear fuel storage[J].Radiation Physics and Chemistry,92:80-86.
Börgesson L, Chijimatsu M, Fujita T,et al,2001.Thermo-hydro-mechanical characterisation of a bentonite-based buffer material by laboratory tests and numerical back analyses[J].International Journal of Rock Mechanics and Mining Sciences,38(1):95-104.
Ghazvinian E, Diederichs M S, Quey R,2014.3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing[J].Journal of Rock Mechanics and Geotechnical Engineering,6:506-521.
Haslam J J, Farmer J C, Hopper R W,et al,2005.Ceramic coatings for a corrosion-resistant nuclear waste container evaluated in simulated ground water at 90 ℃[J].Metallurgical and Materials Transactions,A(36): 1085-1095.
Hennig T, Stockmann M, Kühn M,2020.Simulation of diffusive uranium transport and sorption processes in the opalinus clay[J].Applied Geochemistry,123:104777.
Hou Huiming, Hu Dawei, Zhou Hui,et al,2019.Thermo-hydro-mechanical coupling simulation method of surrounding rock in high-level radioactive waste repository considering effective meso-thermal parameters[J].Rock and Soil Mechanics,40(9):3625-3634.
Itasca Consulting Group,2016.3DEC Manuals[M].Minneapolis:Itasca Consulting Group.
Jiao Y Y, Fan S C, Zhao J,2005.Numerical investigation of joint effect on shock wave propagation in jointed rock masses[J].Journal of Testing and Evaluation,33(3):1-7.
Lay L A,1983.Corrosion Resistance of Technical Ceramics[M].Teddington:Middlesex Her Majesty’s Stationery Office.
Lee M S, Lee J Y, Choi H J,et al,2018.Evaluation of silicon carbide (SiC) for deep borehole disposal canister [J].Journal of the Nuclear Fuel Cycle and Waste Technology,16(2):233-242.
Lee M Y, Brannon R M, Bronowski D R,2004.Uniaxial and triaxial compression tests of silicon carbide ceramics under quasi-static loading condition[R].Albuquerque:Sandia National Laboratory.
McEachern D W, Wu W, Venneri F,2012.Performance of PyC,SiC and ZrC coatings in the geologic repository [J].Nuclear Engineering and Design,251:102-110.
Metz V, Geckeis H, González-Robles E,et al,2012.Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel[J].Radiochimica Acta,100:699-713.
Nasir O, Nguyen T S, Barnichon J D,et al,2017.Simulation of the hydromechanical behaviour of bentonite seals for the containment of radioactive wastes[J].Canadian Geotechnical Journal,54(8):1055-1070.
Onofrei M, Raine D K, Brown L,et al,1984.Leaching studies of nonmetallic materials for nuclear fuel immobilization containers[C]//Proceedings of Materials Research Society Sy-mposium.Boston:Materials Research Society.
Sellin P, Leupin O X,2013.The use of clay as an engineered barrier in radioactive-waste management—A review[J].Clays and Clay Minerals,61:477-498.
Soroka I, Chae N, Jonsson M,2021.On the mechanism of γ-radiation-induced corrosion of copper in water[J].Corrosion Science,182:109279.
Wang J,2010.High-level radioactive waste disposal in China: Update 2010[J].Journal of Rock Mechanics and Geotechnical Engineering,2:1-11.
Wang Jianguo, Liang Shufeng, Gao Quanchen,et al,2018.Experimental study of jointed angles impact on energy transfer characteristics of simulated rock material[J].Journal of Central South University(Science and Technology),49(5):1237-1243.
Xu Tao,2019.THM Coupling Process in Unsaturated Bentonite Buffer Material with Construction Joints and Self-Healing Effects[D].Beijing:Beijing Jiaotong University.
Xu Xun,2021.Hydro-Thermal Evolution Law of Double-Layer Buffer in High-Level Radioactive Waste Repository[D].Yichang:China Three Gorges University.
Zhao Yiwei, Wu Zhijun, Wang Xuhong,et al,2021.Numerical analysis of multi-field coupling of barrier system in deep geological repository for high-level radioactive waste[J].Journal of Central South University(Science and Technology),52(8):2557-2571.
侯会明,胡大伟,周辉,等,2019.考虑细观等效热学参数的高放废物处置库围岩应力—渗流—温度耦合模拟方法[J].岩土力学,40(9):3625-3634.
王建国,梁书锋,高全臣,等,2018.节理倾角对类岩石冲击能量传递影响的试验研究[J].中南大学学报(自然科学版),49(5):1237-1243.
许韬,2019.含施工接缝的非饱和膨润土缓冲材料热—水—力耦合过程及愈合效应[D].北京:北京交通大学.
许迅,2021.高放废物处置库双层缓冲层水—热演化规律[D].宜昌:三峡大学.
赵艺伟,吴志军,王旭宏,等,2021.高放废物深地质处置库屏障系统的多场耦合数值分析[J].中南大学学报(自然科学版),52(8):2557-2571.
[1] 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112.
[2] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[3] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[4] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[5] 李明兼,尹土兵,谭小松,杨政. 基于离散元的花岗岩热敏感性及裂纹扩展研究[J]. 黄金科学技术, 2022, 30(4): 559-573.
[6] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[7] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[8] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[9] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[10] 曾强,黄小荣,王晓军,陈青林,刘健,龚囱. 不同埋深灰岩岩爆倾向性及声发射特征试验研究[J]. 黄金科学技术, 2021, 29(6): 863-873.
[11] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[12] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[13] 赵国彦,党成凯,刘焕新,刘洋,肖屈日,李洋,陈立强,毛文杰. 基于距离判别分析的矿山岩爆倾向性评价[J]. 黄金科学技术, 2021, 29(5): 690-697.
[14] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[15] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[2] 侯刚, 于兆财, 王爱平. 夹皮沟金矿本区矿床地质特征及其找矿意义[J]. J4, 2011, 19(1): 45 -48 .
[3] 宋贵斌, 宋丙剑, 岳继航. 内蒙古额尔古纳市虎拉林金矿床地质特征及成矿规律探讨[J]. J4, 2007, 15(5): 30 -35 .
[4] 柳玉明, 柳楠, 张杰, 宋玉波, 宫隆吉, 王刚, 刘晓, 张海芳. 山东英格庄金矿床构造特征研究及找矿方向[J]. J4, 2010, 18(6): 26 -29 .
[5] 郭俊华, 李建忠, 吴春俊, 毛世东, 郑新旭, 李石桥. 陕甘川“金三角"金矿地质特征及找矿前景分析[J]. J4, 2009, 17(6): 6 -11 .
[6] 刘传. 云西矿区提高出矿品位的技术措施[J]. J4, 2004, 12(3): 28 -31 .
[7] 黄建军,肖文进,高军辉. 华北地台北缘东部地区金矿成矿地质特点及预测[J]. J4, 2008, 16(1): 19 -23 .
[8] 路耀祖. 龙特锑金矿点地质特征及其找矿前景[J]. J4, 2008, 16(3): 13 -16 .
[9] 陈安斌. 矿区独立坐标系的建立方法[J]. J4, 2007, 15(2): 49 -52 .
[10] 林舒,吴雅睿,鲁琛琛,刘静,李绍卿. 缅甸某砷质金矿中金的氰化浸出的研究[J]. J4, 2007, 15(5): 54 -57 .