img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (6): 843-853.doi: 10.11872/j.issn.1005-2518.2021.06.057

• 采选技术与矿山管理 • 上一篇    下一篇

基于空隙量守恒的覆岩裂隙带发育高度模型

黄丹1,2,3(),陈何1,3,郑志杰1,3   

  1. 1.矿冶科技集团有限公司,北京 100160
    2.中南大学资源与安全工程学院,湖南 长沙 410083
    3.国家金属矿绿色开采国际联合研究中心,北京 102628
  • 收稿日期:2021-05-17 修回日期:2021-11-07 出版日期:2021-12-31 发布日期:2022-03-07
  • 作者简介:黄丹(1987-),男,河北衡水人,博士,高级工程师,从事矿山采矿技术研究工作。huangdan@bgrimm.com
  • 基金资助:
    国家重点研发计划重点专项“煤与共伴生战略性金属矿产协调开采成套方法”(2021YFC2902102);国家重点研发计划政府间国际科技创新合作重点专项“地下金属矿规模化绿色开采关键技术合作研究”(2018YFE0123000)

Model of the Height of Overburden Fracture Zone Based on Void Conservation

Dan HUANG1,2,3(),He CHEN1,3,Zhijie ZHENG1,3   

  1. 1.BGRIMM Technology Group, Beijing 100160, China
    2.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    3.National Center for International Joint Research on Green Metal Mining, Beijing 102628, China
  • Received:2021-05-17 Revised:2021-11-07 Online:2021-12-31 Published:2022-03-07

摘要:

预测与控制矿体开采覆岩裂隙带发育高度,是沉积型层系矿体上行开采与保水开采的关键。基于空隙量守恒理论,分析了上覆岩层随采动空隙扩散的岩移规律,以矿体采高、覆岩碎胀系数、裂隙带残余空隙率、顶板垮落和放顶高度为主控因素,建立了预测覆岩裂隙带发育高度的裂隙拱模型H1=fH,k,ε1,h。结合山西某煤下铝土矿采区上行开采的技术条件与采矿方案,开展了相似模拟试验,分析了覆岩空隙扩散规律。同时,在煤下铝土矿开采裂隙带高度模型的基础上,分析了采高、放顶高度与裂隙带高度之间的关系,提出了确定煤下铝土矿采高与放顶高度的方法。通过数值模拟和“三带”理论验证了基于空隙率守恒的裂隙带高度预测模型的有效性和煤下铝土矿开采技术方案的可行性。本文提出的覆岩裂隙带高度模型为预测裂隙带高度与制定覆岩移动控制方案提供了新方法和有益借鉴。

关键词: 空隙量守恒, 数值模拟, 裂隙带高度, 空隙率, 放顶高度, 煤下铝土矿

Abstract:

Prediction and control of the development height of overburden fracture zone in ore-mining is the key of upward mining and water-retaining mining for sedimentary stratum series.When mining in layered strata,the process of caving zone and fractured zone of overlying strata movement tending to bending subsidence zone can be regarded as the result of the diffusion of voids in goaf from bottom to top.When the seam mining span is small,fractures in the overburden arched upward,and formed “fracture arch”. As the voids in the fracture arch continue to spread upwards,when the rock voidage in the fractured arch reaches the residual dilatancy coefficient under the action of rock pressure compound extrusion,the stress equilibrium state is formed between the mining affected area and the outer rock strata. At this time,the fracture arch no longer rise upward. Increasing the mining span of the seam will break the form of fracture arch and make the range of fracture arch to fracture zone. The highest arch height of the fracture arch the same as the height of the fracture zone. Above the height range of the fracture arch is the bending subsidence zone.Based on the theory of void conservation in this paper,the strata movement rule of overlying strata with mining void diffusion was analyzed. By analyzing the limiting geometry condition of fractured arch developing upward with mining-induced voids,while taking mining height,expansion coefficient of overburden rock,residual voidage,height of roof caving as main control factors,the fissure arch model for predicting development height of overburden fracture zone was established H1=fH,k,ε1,h. Combined with the technical condition and upward mining method of a bauxite ore under coal seams in Shanxi,the similar simulation test was carried out to study and analyze the diffusion rule of overlying rock voids.When the movement range of overburden grows to the integral sinking horizon with excavation steps,increasing the stope width leads to the development of fracture zone from arch to inverted trapezoid or saddle shape.The movement zone in the overburden gradually develops upward to the integral sinking horizon,which is characterized by bending subsidence zone.The bauxite dilatancy coefficient of alu-minum strata under coal is about 10%.Based on the height model of fracture zone in under-coal bauxite mining,the relationship among mining height,caving height and fracture zone height was analyzed.When the distance between coal and bauxite is 32.0 m and the mining height of bauxite is 3.0 m,the caving height is 4.0 m. A method for determining the mining height and caving height of under-coal bauxite ore was proposed. Through numerical simulation and “three zone theory” analysis,the effectiveness of fracture zone height prediction model based on void conservation and the feasibility of mining method for under-coal bauxite ore were proved. The prediction model proposed in this paper provides a new method and a useful reference for predicting the height of overburden fracture zone and making the control scheme of overlying rock movement.

Key words: void conservation, numerical simulation, fracture zone height, voidage, roof caving height, under-coal bauxite

中图分类号: 

  • TD325

图1

覆岩内空隙扩散岩移结构示意图"

图2

裂隙拱剖面简化为三角形示意图"

图3

垮落体边界与水平面夹角α的最小值"

表1

煤下铝土矿研究区地层和地质条件"

统(群)地层代号岩性描述
古生界二叠系下统下石盒子组P1x

上部为灰黄色石英砂岩、黄绿色砂质页岩和紫红色泥岩;

下部为黄绿色石英砂岩及黄绿、灰绿色砂质泥岩

山西组P1s灰白色石英砂岩和灰色砂质泥岩,中夹煤层
石炭系上统太原组C3t

底部为厚约12 m的灰白、白色厚层中粗粒含砾砂岩、砂质粘土岩,中部夹煤层,

厚度约10 m,上部由细砂岩、黑色泥岩、炭质泥岩、砂质泥岩和煤层组成

中统本溪组C2b

二段底部为细砂岩和砂质粘土岩,向上依次为杂色粘土岩、砂质粘土岩、

薄层细砂岩和黑色泥岩,顶部局部夹1~2层不稳定的生物碎屑灰岩;

一段为山西式铁矿、铝土矿和硬质耐火粘土矿的赋存层位

奥陶系中统峰峰组O2 f泥灰岩、泥质白云岩及角砾状泥灰岩
上马家沟组O2s顶部为灰岩,中下部为泥灰岩、白云质灰岩、豹皮状灰岩和角砾状灰岩

图4

相似模拟试验及覆岩移动范围示意图"

图5

覆岩移动范围面积随开采时间的变化"

图6

覆岩移动范围高度随开采时间的变化"

图7

覆岩移动范围内空隙率随开采时间的变化"

图8

煤下铝土矿开采裂隙带高度、采高及放顶高度的关系图"

图9

煤下铝土矿开采数值模型(a)与回采顺序(b)"

图10

房柱法开采后不处理空区与放顶处理空区的覆岩移动数值模拟结果比较(走向Y=150剖面)"

null Fan Limin, Ma Xiongde, Wu Qunying, al et,2020.Analysis on technical points of water-preserving coal mining technical specifications[J].Coal Science and Technology,48(9):81-87.
null Feng Chao, Dai Gelian,2019.Prediction of developmental hei-ght of water flowing fractured zone under mining conditions[J].Coal Technology,38(12):94-98.
null Gao Zeming,2021.Study on height of water conducting development in goaf[J].Coal Technology,40(1):78-81.
null Hao Qinwang,1988.Void diffusion model for mined strata and analysis of influence of void sources[J].Journal of China University of Mining & Technology,(2):33-39.
null He Huaping,2019.Comparison of results from numerical simulation and formula calculation in “three zones” division of overlying strata in gob[J].Coal Technology,38(6):51-54.
null Hou Gongyu, Hu Tao, Li Zixiang, al et,2020.Fiber optic strain characterization of “two zones” deformation of overburden mining based on BOFDA[J].Journal of Mining and Safety Engineering,37(2):224-237.
null Huang Dan, Chen He, Wang Chang, al et,2019.Study on mining method of the bauxite resources under coal seams[J].Nonferrous Metals (Mine Section),71(1):1-4.
null Jiang Y D, Meng L, Zhao Y X, al et,2012.The feasibility research on ascending mining under the condition of multi-disturbances[J].Procedia Environmental Sciences,12:758-764.
null Jiao Zhenhua, Tao Guangmei, Wang Hao, al et,2017.Overburden strata movement and fissure evolution in lower protective layer in Jincheng mining district[J].Journal of Mining and Safety Engineering,34(1):85-90.
null Ju Jinfeng, Xu Jialin, Zhu Weibing,2017.Storage capacity of underground reservoir in the Chinese western water-short coalfield[J].Journal of China Coal Society,42(2):381-387.
null Li Quansheng, Zhang Cun,2021.Damage conduction model of high intensity mining in western mining area based on conservation of mining space and its application[J].Journal of Mining and Safety Engineering,38(1):1-8.
null Li Y, Ren Y Q, Peng S S, al et,2021.Measurement of overburden failure zones in close-multiple coal seams mining[J].International Journal of Mining Science and Technology,31(1):43-50.
null Liu Jianlong, Yu Chao, Dong Jumei,2018.Application of the direct roof thickness detection technology in underground bauxite mines[J].Nonferrous Metals(Mine Section),70(6):105-109.
null Liu Tianquan,1995.Influence of mining activities on mine rockmass and control engineering[J].Journal of China Coal Society,(1):1-5.
null Mao Zhiyong, Lai Wenzhe, Huang Chunjuan,2020.Prediction of height of water flowing fractured zone based on APSO-LSSVM model[J].Journal of Liaoning Technical University(Natural Science Edition),39(1):34-40.
null Miao Xiexing, Ju Feng, Huang Yanli, al et,2015.New development and prospect of backfilling mining theory and technology[J].Journal of China University of Mining & Technology,44(3):391-399,429.
null Ning J G, Wang J, Tan Y L, al et,2020.Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining[J].International Journal of Mining Science and Technology,30(2):207-215.
null Qu Qundi, Yao Qiangling, Li Xuehua,2010.Research on theory of space conversation for subsidence control in backfilling mining and its application[J].Journal of Hunan University of Science & Technology (Natural Science Edition),25(1):8-12.
null Shi Feng, Wang Hongtu, Shu Cai,2018.Similar simulation study on the influence of seam angle change on deformation law of overburden strata in coal seam mining[J].Journal of Chongqing University (Natural Science Edition),41(12):36-45.
null Shi Longqing, Xin Hengqi, Zhai Peihe, al et,2012.Calculating the height of water flowing fracture zone in deep mining[J].Journal of China University of Mining & Technology,41(1):37-41.
null State Bureau of Coal Industry,2017.Norm of Leaving Coal Pillar and Mining Coal Under Building,Water Body,Railway and Main Shaft & Roadway[M].Beijing:China Coal Industry Publishing House.
null Wang Jin’an, Han Xiangang, Pang Weidong, al et,2017.Photoelastic experimental study on the force chain structure and evolution in top coal and overlaying strata under fully mechanized top coal caving mining[J].Chinese Journal of Engineering,39(1):13-22.
null Wang Lianguo, Wang Zhansheng, Huang Jihui, al et,2012.Prediction on the height of water-flowing fractured zone for shallow seam covered with thin bedrock and thick windblown sands[J].Journal of Mining and Safety Engineering,29(5):607-612.
null Wang Xiaozhen, Xu Jialin, Han Hongkai, al et,2019.Stepped development characteristic of water flowing fracture height with variation of mining thickness[J].Journal of China Coal Society,44(12):3740-3749.
null Wang Xufeng, Zhang Dongsheng, Ma Liqiang, al et,2008.Numerical analysis on distributing features of under-river mining induced fissures in overburden rocks[J].Mining Research and Development,(5):61-63.
null Wang Zhiqiang, Li Pengfei, Wang Lei, al et,2013.Method of division and engineering use of “three band” in the stope again[J].Journal of China Coal Society,38(Supp.2):287-293.
null Xia Xiaogang,2012.Study on “Four-zone” Models of Mining Strata and Surface Movement[D].Xi’an:Xi’an University of Science and Technology.
null Xu Jialin, Wang Xiaozhen, Liu Wentao, al et,2009.Effects of primary key stratum location on height of water flowing fracture zone[J].Chinese Journal of Rock Mechanics and Engineering,28(2):380-385.
null Xu Z M, Sun Y J, Dong Q H, al et,2010.Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir[J]. Mining Science and Technology (China),20(3):434-438.
null Xue Jiankun, Wang Hao, Zhao Chunhu, al et,2020.Prediction of the height of water-conducting fracture zone and water-filling model of roof aquifer in Jurassic coalfield in Ordos Basin[J].Journal of Mining and Safety Engineering,37(6):1222-1230.
null Yang Daming, Guo Wenbing, Zhao Gaobo, al et,2019.Height of water-conducting zone in longwall top-coal caving mining under thick alluvium and soft overburden[J].Journal of China Coal Society,44(11):3308-3316.
null Zhai Zhiwei, Meng Xiufeng, Wu Zhigao, al et,2020.Height determination of water flowing fractured zone based on borehole imaging observation[J].Coal Engineering,52(11):89-93.
null Zhang Enqiang, Zhang Jianzhong, Liu Jinhui,2011.Overburden strata movement law for ascending mining of coal mine[J].Journal of Xi’an University of Science and Technology,31(3):258-262.
null Zhang Hongzhen, Deng Kazhong, Gu Wei,2016.Distribution law of the old goaf residual cavity and void[J].Journal of Mining and Safety Engineering,33(5):893-897.
null Zhang Jun, Wang Jianpeng,2014.Similar simulation and practical research on the mining overburden roof strata “three-zones” height[J].Journal of Mining & Safety Engineering,31(2):249-254.
null Zhang Meng,2019.Theoretical Study on Overburden Control of High Efficiency Paste Backfilling Working Face[D].Xuzhou:China University of Mining and Technology.
null Zhang Peihe, Zhang Qi, Sun Xueyang, al et,2019.Similar material simulation experimental study on overburden movement caused water conducted zone height in coal mining[J].Coal Geology of China,31(10):49-52,72.
null Zhang Qinghe, Yang Ke, Yuan Liang, al et,2019.Experimental study on deformation and collapse characteristics of two stope belts based on continuous displacement monitoring[J].Advanced Engineering Sciences,51(3):36-42.
null Zhang Yun, Cao Shenggen, Lai Xingping, al et,2019.Study on the development mechanism and control of water-conducting fractures in short-wall block backfill mining[J].Journal of Mining and Safety Engineering,36(6):1086-1092.
null Zhang Zhaowei,2015.Research on Moving Rules of Surrouding Rock for Backfill Mining with Superhigh-water Material in Medium-thickness Seam[D].Xuzhou:China University of Mining and Technology.
null Zuo Jianping, Sun Yunjiang, Qian Minggao,2017.Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J].Journal of China Coal Society,42(6):1372-1379.
null 范立民,马雄德,吴群英,等,2020.保水采煤技术规范的技术要点分析[J].煤炭科学技术,48(9):81-87.
null 冯超,代革联,2019.采动条件下导水裂隙带发育高度预测[J].煤炭技术,38(12):94-98.
null 高泽明,2021.采空区上覆岩层导水裂隙发育高度研究[J].煤炭技术,40(1):78-81.
null 国家煤炭工业局,2017.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社.
null 郝庆旺,1988.采动岩体的空隙扩散模型与空源作用分析[J].中国矿业学院学报,(2):33-39.
null 贺化平,2019.采空区上覆岩层“三带”划分理论计算与数值模拟结果对比[J].煤炭技术,38(6):51-54.
null 侯公羽,胡涛,李子祥,等,2020.基于BOFDA的覆岩采动“两带”变形表征研究[J].采矿与安全工程学报,37(2):224-237.
null 黄丹,陈何,王昌,等,2019.煤系地层覆盖下铝土矿采矿方法研究[J].有色金属(矿山部分),71(1):1-4.
null 焦振华,陶广美,王浩,等,2017.晋城矿区下保护层开采覆岩运移及裂隙演化规律研究[J].采矿与安全工程学报,34(1):85-90.
null 鞠金峰,许家林,朱卫兵,2017.西部缺水矿区地下水库保水的库容研究[J].煤炭学报,42(2):381-387.
null 李全生,张村,2021.基于采动空间守恒的西部矿区高强度开采损伤传导模型及应用[J].采矿与安全工程学报,38(1):1-8.
null 刘建龙,余超,董菊美,2018.顶板厚度探测技术在地下铝土矿的应用研究[J].有色金属(矿山部分),70(6):105-109.
null 刘天泉,1995.矿山岩体采动影响与控制工程学及其应用[J].煤炭学报,(1):1-5.
null 毛志勇,赖文哲,黄春娟,2020.基于APSO-LSSVM模型的导水裂隙带高度预测[J].辽宁工程技术大学学报(自然科学版),39(1):34-40.
null 缪协兴,巨峰,黄艳利,等,2015.充填采煤理论与技术的新进展及展望[J].中国矿业大学学报,44(3):391-399,429.
null 瞿群迪,姚强岭,李学华,2010.充填开采控制地表沉陷的空隙量守恒理论及应用研究[J].湖南科技大学学报(自然科学版),25(1):8-12.
null 施峰,王宏图,舒才,2018.煤层倾角变化对采动覆岩变形规律影响的相似模拟试验研究[J].重庆大学学报,41(12):36-45.
null 施龙青,辛恒奇,翟培合,等,2012.大采深条件下导水裂隙带高度计算研究[J].中国矿业大学学报,41(1):37-41.
null 王金安,韩现刚,庞伟东,等,2017.综放开采顶煤与覆岩力链结构及演化光弹试验研究[J].工程科学学报,39(1):13-22.
null 王连国,王占盛,黄继辉,等,2012.薄基岩厚风积沙浅埋煤层导水裂隙带高度预计[J].采矿与安全工程学报,29(5):607-612.
null 王晓振,许家林,韩红凯,等,2019.顶板导水裂隙高度随采厚的台阶式发育特征[J].煤炭学报,44(12):3740-3749.
null 王旭锋,张东升,马立强,等,2008.河下采煤覆岩采动裂隙分布特征的数值分析[J].矿业研究与开发,(5):61-63.
null 王志强,李鹏飞,王磊,等,2013.再论采场“三带”的划分方法及工程应用[J].煤炭学报,38(增2):287-293.
null 夏小刚,2012.采动岩层与地表移动的“四带”模型研究[D].西安:西安科技大学.
null 许家林,王晓振,刘文涛,等,2009.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,28(2):380-385.
null 薛建坤,王皓,赵春虎,等,2020.鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,37(6):1222-1230.
null 杨达明,郭文兵,赵高博,等,2019.厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J].煤炭学报,44(11):3308-3316.
null 翟志伟,孟秀峰,武志高,等,2020.基于钻孔成像观测的导水裂隙带高度确定方法研究[J].煤炭工程,52(11):89-93.
null 张恩强,张建忠,刘金辉,2011.煤矿上行开采覆岩运动规律研究[J].西安科技大学学报,31(3):258-262.
null 张宏贞,邓喀中,顾伟,2016.老采空区残留空洞空隙分布规律研究[J].采矿与安全工程学报,33(5):893-897.
null 张军,王建鹏,2014.采动覆岩“三带”高度相似模拟及实证研究[J].采矿与安全工程学报,31(2):249-254.
null 张猛,2019.高效膏体充填工作面覆岩控制的理论研究[D].徐州:中国矿业大学.
null 张培河,张齐,孙学阳,等,2019.煤炭开采覆岩移动导水裂隙带发育高度相似材料模拟实验研究[J].中国煤炭地质,31(10):49-52,72.
null 张庆贺,杨科,袁亮,等,2019.基于位移连续监测的采场两带变形垮落特性试验研究[J].工程科学与技术,51(3):36-42.
null 张云,曹胜根,来兴平,等,2019.短壁块段式充填采煤覆岩导水裂隙发育机理及控制研究[J].采矿与安全工程学报,36(6):1086-1092.
null 张兆威,2015.中厚煤层超高水材料充填开采围岩活动规律研究[D].徐州:中国矿业大学.
null 左建平,孙运江,钱鸣高,2017.厚松散层覆岩移动机理及“类双曲线”模型[J].煤炭学报,42(6):1372-1379.
[1] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[2] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[3] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[4] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[5] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[6] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[7] 谢学斌,高山,过江,叶永飞. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021, 29(2): 226-235.
[8] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[9] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[10] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[11] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[12] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[13] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[14] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[15] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨宝荣, 杨小斌. 青海都兰果洛龙洼金矿床地质特征及控矿因素浅析[J]. J4, 2007, 15(1): 26 -30 .
[2] 姜文峰,张彬. 山东平度旧店金矿床的成矿特点及深部盲矿预测标志[J]. J4, 2008, 16(4): 45 -47 .
[3] 段留安,戚静洁,顿美霞. 乳山市中庄金矿区地质特征及找矿方向[J]. J4, 2007, 15(6): 24 -29 .
[4] 张俊杰,王公海,刘倩,于水光,王军杰. 浅谈山东黄金矿业进口设备备件国产化[J]. J4, 2008, 16(4): 86 -89 .
[5] 郭俊华, 李建忠, 吴春俊, 毛世东, 郑新旭, 李石桥. 陕甘川“金三角"金矿地质特征及找矿前景分析[J]. J4, 2009, 17(6): 6 -11 .
[6] 王康林,汪模辉,蒋金龙. 难处理金矿石的细菌氧化预处理研究现状[J]. J4, 2001, 9(1): 19 -24 .
[7] 杨瑞士,余景明. 湖南金矿床类型、特点及前景预测[J]. J4, 2001, 9(3-4): 19 -24 .
[8] 杨明荣, 牟长贤. 活性炭富集分离—碘量法测定金矿石中金的不确定度评定[J]. J4, 2009, 17(2): 46 -50 .
[9] 李厚民,孙继东,王崇礼. 宁夏海原县南、西华山地区与中酸性侵人岩有关的Au Cu成矿系列[J]. J4, 1998, 6(2): 27 -33 .
[10] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .