img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (1): 63-74.doi: 10.11872/j.issn.1005-2518.2024.01.092

• 采选技术与矿山管理 • 上一篇    下一篇

高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响

李杰林1(),刘一良1,王玉普2,李在利2,周科平1,程春龙1   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.玉溪矿业有限公司,云南 玉溪 653100
  • 收稿日期:2023-06-19 修回日期:2023-12-06 出版日期:2024-02-29 发布日期:2024-03-22
  • 作者简介:李杰林(1982-),男,湖南宁远人,副教授,从事采矿工程和矿井热害防治研究工作。lijielin@163.com
  • 基金资助:
    云南省科技人才与平台计划项目“高温矿井通风微环境智能调控”(202205AF150073)

Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway

Jielin LI1(),Yiliang LIU1,Yupu WANG2,Zaili LI2,Keping ZHOU1,Chunlong CHENG1   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Yuxi Mining Co. , Ltd. , Yuxi 653100, Yunnan, China
  • Received:2023-06-19 Revised:2023-12-06 Online:2024-02-29 Published:2024-03-22

摘要:

为了改善独头掘进巷道高温环境,以大红山铜矿西矿段-20 m中段北沿脉西侧高温独头掘进巷道为研究对象,利用Fluent进行数值模拟,开展了风筒高度、抽出式风筒滞后压入式风筒距离及抽压比对独头巷道人工制冷降温效果的影响研究。结果表明:压入式风筒高度对降温效果影响明显,最佳高度为1.0 m;抽出式风筒与压入式风筒高度持平时,降温效果最好,最佳高度为1.0 m;抽出式风筒滞后压入式风筒距离过大不利于降温,最佳距离为5.0 m;抽压比过小或过大均不能使掘进巷道形成良好的风流循环,降温效果较差,最佳抽压比为2.0。研究成果可为高温矿井通风辅助人工制冷降温参数选取提供指导。

关键词: 高温热害, 掘进巷道, 数值模拟, 混合式通风, 人工制冷, 通风参数

Abstract:

With the increasing mining depth of metal mines,the problem of high temperature damage in mines is becoming more and more serious,which has become an urgent problem to be solved in deep mining of metal mines.At present,high-temperature mine cooling technology can be divided into two categories:Non-artificial refrigeration cooling technology and artificial refrigeration cooling technology.The latter can effectively solve the cooling problem of high-temperature mines,and is widely used in high-temperature mines at home and abroad.However,a large amount of heat will be generated during the operation of the artificial cooling equipment,which is easy to cause heat accumulation,thus affect the cooling effect.Therefore,it is a reasonable and feasible method to use the local ventilation system of the mine to discharge the heat generated by the operation of the cooling equipment.The high-temperature single-headed excavation roadway on the west side of the -20 m level of the north along the vein in the west section of the Dahongshan copper mine was taken as the research object,and numerical simulations were conducted by Fluent software to investigate the effects of the vent duct height,the distance of the exhaust vent duct lagging the forced vent duct and the exhaust forced ratio on the cooling effect of artificial cooling.The results show that the height of forced vent duct has an obvious influence on the cooling effect,and the optimal height is 1.0 m.The cooling effect is the best when the height of exhaust vent duct is equal to that of forced vent duct,and the optimal height is 1.0 m.The distance between exhaust vent duct and forced vent duct is too large,which is not conducive to cooling,and the optimal distance is 5.0 m.The exhaust forced ratio is too small or too large to form a good wind circulation in the driving drift,and the cooling effect is poor,the optimal exhaust forced ratio is 2.0.The research results can provide guidance for the selection of artificial cooling parameters for high temperature mine ventilation assisted cooling.

Key words: high temperature damage, tunneling roadway, numerical simulation, mixed ventilation, artificial cooling, ventilation parameters

中图分类号: 

  • TD724

图1

人工制冷设备侧视图及其在掘进巷道内实际安装图"

图2

高温独头掘进巷道物理模型"

表1

物理模型边界条件参数"

边界边界类型设定数值
人工制冷设备冷风出口速度进口速度8.6 m/s,温度22 ℃
人工制冷设备热风出口速度进口速度6.4 m/s,温度50 ℃
压入式风筒出风口速度进口速度6.0 m/s,温度36 ℃
巷道出口压力出口压力0 Pa
人工制冷设备冷风进风口压力出口压力-10 Pa
巷道围岩壁面温度42 ℃,导热系数3.468 W/(m·K)
风筒壁面导热系数0.23 W/(m·K)

表2

数值计算方案"

数值计算变量工况设置
压入式风筒高度H10.5 m、1.0 m、1.5 m、2.0 m
抽出式风筒高度H20.5 m、1.0 m、1.5 m、2.0 m
抽出式风筒滞后压入式风筒距离D5.0 m、9.0 m、13.0 m、17.0 m
抽压比R0.5、1.0、2.0、3.0

图3

数值模拟温度监测线布置图"

图4

现场试验情况及数值模拟模型"

图5

3个测点模拟温度值与实测温度值对比"

图6

不同压入式风筒高度下各截面平均温度"

图7

H1=1.0 m时不同截面温度分布云图"

图8

H1=1.0 m时L1~L5各直线区域的温度变化"

图9

H1=1.0 m时不同抽出式风筒高度下各截面平均温度"

图10

压入式和混合式通风最佳工况下各截面平均温度"

图11

压入式通风最佳工况下掘进巷道制冷空间内不同截面温度分布云图"

图12

混合式通风最佳工况下掘进巷道制冷空间内不同截面温度分布云图"

图13

H2=1.0 m时L1~L5各直线区域的温度变化"

图14

抽出式风筒滞后压入式风筒不同距离下各截面平均温度"

图15

D=5.0 m和D=9.0 m时X=1.7 m处的温度分布云图"

图16

不同抽压比下各截面平均温度"

Bao Jianqiao, Guo Hong, Shi Minghui,2022.Improved algorithm of the hydrodynamic bearing based on FLUENT dynamic mesh[J].Modern Manufacturing Engineering,(7):104-107,182.
Cai Meifeng, Xue Dinglong, Ren Fenhua,2019.Current status and development strategy of metal mines [J].Chinese Journal of Engineering,41(4):417-426.
Chen Caixian, Huang Shouyuan, Li Gang,et al,2011.Numerical simulation study on thermal environment in a blind heading with combined local ventilation[J].Mining Safety and Environmental Protection,38(4):4-7,93.
Chen Hao,2019.Study on Cooling Effect and Thermal Comfort of Water Injection and Ventilation in Coal and Rock Mass of Deep Mine [D].Xiangtan:Hunan University of Science and Technology.
Chu Yanhao, Liu Jingxian, Chang Deqiang,et al,2020.Experimental study on the mine geothermal hazard control based on heal transfer by heat pipe[J].Metal Mine,49(1):108-114.
Du Cuifeng, Xu Zhe, Tang Zhanxin,et al,2016.Numerical simulation of ventilation and cooling in excavation roadway and analysis of influencing factors[J].Metal Mine,45(2):151-155.
Gong Jian, Hu Nailian, Lin Ronghan,et al,2015.Numerical simulation on dust migration law in excavation roadway with forced ventilation[J].Nonferrous Metals(Mining Section),67(1):65-68.
Guo Duiming, Li Guoqing, Hou Jie,et al,2022.Optimization of local ventilation parameters of deep mine excavation roadway based on FLUENT [J].Gold Science and Technology,30(5):753-763.
Hou Jiangli, Wu Lingling, Luo Xuzhao,et al,2020.A cooling and heat-collecting experimental system in deep mine based on direct expansion ground-coupled heat pump [J].Nonferrous Metals Engineering,10(3):62-68.
Li J L, Yu X L, Huang C H,et al,2022.Research on the mobile refrigeration system at a high temperature working face of an underground mine[J].Energies,15(11):1-15.
Li Jielin, Cheng Chunlong, Zhou Keping,et al,2022.Study on optimization of artificial refrigeration cooling effect in high-temperature blind roadway[J].Journal of Safety Science and Technology,18(10):238-244.
Li Jielin, Yu Xiaoli, Huang Chonghong,et al,2021.Numerical simulation of ice cooling in heading face of high-temperature mine[J].Journal of Safety Science and Technology,17(8):97-103.
Li Yong, Chu Zhaoxiang, Ji Jianhu,et al,2014.Numerical simulation of airflow and temperature field in excavation roadway[J].Coal Science and Technology,42(Supp.1):142-145,148.
Li Zijun, Xu Yu, Jia Mintao,et al,2021.Numerical simulation on heat hazard control by collaborative geothermal exploitation in deep mine [J].Journal of Central South University(Science and Technology),52(3):671-680.
Liu G L, Liu H Q, Chen F,et al,2022a.The effect of environmental variables and metabolic rate on physiological parameters in a hot and humid mine[J].Science and Technology for the Built Environment,28(4):451-466.
Liu J J, Zhang Y, Chen S Q,et al,2022b.Simulation study of gas explosion propagation law in coal mining face with different ventilation modes[J].Frontiers in Energy Research,10:1-13.
Luo Yongdong, Wang Haining, Zhang Yingbin,2020.Research and application of cooling technology in roadway driving in the mine at high temperature [J].Nonferrous Metals Science and Engineering,11(1):85-91.
Song Dongping, Zhou Xihua, Li Jingyang,et al,2017.Liquid carbon dioxide phase-change refrigeration and cooling technology of high temperature mine [J].Coal Science and Technology,45(10):82-87.
Wang W H, Zhang C F, Yang W Y,et al,2019.In situ measurements and CFD numerical simulations of thermal environment in blind headings of underground mines[J].Processes,7(5):1-21.
Xin S, Wang W H, Zhang N N,et al,2021.Comparative studies on control of thermal environment in development headings using force/exhaust overlap ventilation systems [J].Journal of Building Engineering,38:1-14.
Xin Song, Liu Shangxiao, Zhang Xiao,et al,2020.Influence of different ventilation parameters on cooling of driving face[J].Safety in Coal Mines,51(10):112-117.
Yao W J, Pang J Y, Ma Q Y,et al,2021.Influence and sensitivity analysis of thermal parameters on temperature field distribution of active thermal insulated roadway in high temperature mine[J].International Journal of Coal Science and Technology,8(1):47-63.
Zhu Hailiang, Liu Jingxian, Chang Deqiang,et al,2020.Experimental study on deep mine geothermal hazard control based on heat pump and power heat pipe[J].Metal Mine,49(1):101-107.
鲍建桥,郭红,石明辉,2022.基于FLUENT动网格的动压轴承特性改进算法[J].现代制造工程,(7):104-107,182.
蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426.
陈才贤,黄寿元,李刚,等,2011.混合式局部通风独头巷道热环境数值模拟研究[J].矿业安全与环保,38(4):4-7,93.
陈浩,2019.深部矿井煤岩体注水与通风方式下降温效果与热舒适研究[D].湘潭:湖南科技大学.
初砚昊,柳静献,常德强,等,2020.基于热管输热的矿井地热危害控制试验研究[J].金属矿山,49(1):108-114.
杜翠凤,徐喆,唐占信,等,2016.掘进巷道通风降温的数值模拟及影响因素分析[J].金属矿山,45(2):151-155.
龚剑,胡乃联,林荣汉,等,2015.掘进巷道压入式通风粉尘运移规律数值模拟[J].有色金属(矿山部分),67(1):65-68.
郭对明,李国清,侯杰,等,2022.基于FLUENT的深井掘进巷道局部通风参数优化[J].黄金科学技术,30(5):753-763.
侯江丽,伍玲玲,罗旭照,等,2020.基于直膨式热泵技术的深井集热降温实验系统[J].有色金属工程,10(3):62-68.
李杰林,程春龙,周科平,等,2022.高温独头巷道人工制冷降温效果的优化研究[J].中国安全生产科学技术,18(10):238-244.
李杰林,喻晓丽,黄冲红,等,2021.高温矿井掘进工作面冰块降温数值模拟研究[J].中国安全生产科学技术,17(8):97-103.
李勇,褚召祥,姬建虎,等,2014.掘进巷道风流流场和温度场数值模拟[J].煤炭科学技术,42(增1):142-145,148.
李孜军,徐宇,贾敏涛,等,2021.深部矿井岩层地热能协同开采治理热害数值模拟[J].中南大学学报(自然科学版),52(3):671-680.
罗勇东,王海宁,张迎宾,2020.矿井高温掘进巷道降温技术研究及应用[J].有色金属科学与工程,11(1):85-91.
宋东平,周西华,李景阳,等,2017.高温矿井液态CO2相变制冷降温技术[J].煤炭科学技术,45(10):82-87.
辛嵩,刘尚校,张逍,等,2020.不同通风参数对掘进工作面降温的影响[J].煤矿安全,51(10):112-117.
朱海亮,柳静献,常德强,等,2020.热泵与动力热管复合的深井热害控制试验研究[J].金属矿山,49(1):101-107.
[1] 王开彬,刘钦,王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[2] 徐泽峰,史秀志,黄仁东,丁文智,陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[3] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[4] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[5] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[6] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[7] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[8] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[9] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[10] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[11] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[12] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[13] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[14] 聂兴信,刘哲伟,高赵祥,程平. 高温金属矿井巷道掘进中组合压冷风筒布位对降温效果的影响[J]. 黄金科学技术, 2022, 30(1): 85-92.
[15] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!