img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (3): 438-448.doi: 10.11872/j.issn.1005-2518.2022.03.128

• 采选技术与矿山管理 • 上一篇    

开挖卸荷扰动下的深部巷道支护及其效果评价

陈立强(),赵国彦(),李洋,毛文杰,党成凯,方博扬   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2021-09-16 修回日期:2021-12-30 出版日期:2022-06-30 发布日期:2022-09-14
  • 通讯作者: 赵国彦 E-mail:1976596117@qq.com;gy.zhao@263.net
  • 作者简介:陈立强(1996-),男,湖北十堰人,硕士研究生,从事地压智能监测及灾害控制研究工作。1976596117@qq.com
  • 基金资助:
    “十三五”国家重点研发计划课题“深部金属矿绿色开采关键技术研发与示范”(2018YFC0604606)

Deep Roadway Support and Its Effect Evaluation Under Excavation Unloading Disturbance

Liqiang CHEN(),Guoyan ZHAO(),Yang LI,Wenjie MAO,Chengkai DANG,Boyang FANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-09-16 Revised:2021-12-30 Online:2022-06-30 Published:2022-09-14
  • Contact: Guoyan ZHAO E-mail:1976596117@qq.com;gy.zhao@263.net

摘要:

为了解决某金矿深部巷道存在的围岩灾变损伤严重、支护结构濒临失效的问题,开展了有关深部巷道开挖卸荷和采动影响耦合作用下的开挖损伤研究,并针对性地提出围岩变形控制方案。运用FLAC3D软件从应力集中—迁移演化、位移场和塑性区分布3个方面对该支护方案的支护效果进行深入探讨,并结合现场工程试验监测所获得的实时原位数据进行分析对比。研究结果表明:深部破碎化巷道在开挖扰动下塑性区扩展趋势明显,两帮肩部及侧墙底角处应力集中程度较高,底板所受破裂损伤压力最大,高应力向巷道深部迁移,最终巷道开挖影响区停留在半径的2~4倍。同时,验证了针对这种工程环境所施加的喷—锚—网联合支护替代传统的U型钢架、锚杆支护做补强支护这一围岩控制方案能够更好地发挥破碎化围岩的自承载能力,有效抵御巷道的变形破坏,具有良好的支护效果,能够为类似工程环境的矿山深部巷道围岩变形控制和支护设计提供合理化建议。

关键词: 深部开采, 数值模拟, 时效支护, 评价效果, 应力监测, 巷道稳定性

Abstract:

Roadway support work is very important to ensure the safety and sustainable development of enterprise production,reasonable support can not only ensure the stability of the roadway to the greatest extent,but also greatly save the cost of support.Especially in recent years,with the increase of mining depth,there is a high stress environment caused by excavation unloading and mining impact the deep roadway,which greatly increases the probability of safety hazards such as roof caving,gangstay or even collapse,so it is more necessary to optimize governance and time-effective support.In order to solve the serious catastrophic damage of the surrounding rock and the near failure of the supporting structure in the deep roadway of a gold mine, the excavation damage of deep roadway under the coupling effect of excavation and mining unloading was studied,and the deformation control scheme of surrounding rock was proposed.FLAC3D was used to conduct an in-depth discussion on the support effect of the supporting scheme from three aspects of stress concentration-migration evolution,displacement field and plastic zone distribution characteristics,and the real-time in-situ data obtained from field engineering experiment monitoring were analyzed and compared.The results show that under the disturbance of excavation in the deep fractured roadway,the plastic zone is obviously expanded,the stress con-centration degree at both shoulders and the bottom corner of the side wall is high,the fracture damage pressure on the floor is the largest,and the high stress migrates to the deep part of the roadway.Finally,the influence of roadway excavation stays at about 2~4 times the radius.At the same time,according to the measured data,the stress of the surrounding rock of the roadway increases continuously during the unloading disturbance process of the roadway excavation,which indicates that the excavation disturbance in the adjacent stope will have a grea-ter impact on the stability of the roadway.Before and after the support is applied,the average growth rate of the roadway surrounding rock stress decreases from 0.096 to 0.008.At this time,as the amount of ore continues to increase,the stress in the surrounding rock remains relatively stable.It is verified that the surrounding rock control scheme of shotcrete-anchor-net combined support instead of the traditional U-shaped steel frame and bolt support as reinforcement support for this engineering environment can better play the fragmented surrounding rock.The self-bearing capacity of the roadway effectively resists the deformation and damage of the roadway,and has a very good supporting effect.It can provide reasonable suggestions for the design of surrounding rock deformation and support for deep mine roadways with similar engineering environments.

Key words: deep mining, numerical simulation, aging support, evaluation effect, stress monitoring, roadway stability

中图分类号: 

  • TD353

表1

某金矿岩体物理力学参数"

岩石名称容重/(g·cm-3单轴抗拉强度/MPa单轴抗压强度/MPa弹性模量/GPa内摩擦角/(°)内聚力/MPa泊松比
花岗岩2.598.5676.8521.1848.3535.780.23
石英脉2.613.3525.7622.5444.623.390.25
黑云斜长片麻岩2.744.8884.2529.6445.3231.260.26

图1

巷道及围岩在不同应力环境下的破坏形式"

图2

巷道不同支护破坏形式"

图3

巷道支护方案断面"

图4

不同支护条件下巷道位移云图(a)巷道开挖;(b)锚杆支护;(c)锚杆—混凝土支护;(d)锚杆—混凝土—金属网支护"

图5

不同支护条件下巷道最大主应力云图(a)巷道开挖;(b)锚杆支护;(c)锚杆—混凝土支护;(d)锚杆—混凝土—金属网支护"

图6

不同支护条件下巷道塑性区分布云图(a)巷道开挖;(b)锚杆支护;(c)锚杆—混凝土支护;(d)锚杆—混凝土—金属网支护"

图7

现场监测试验安装情况"

图8

巷道支护后监测"

图9

工程实测应力变化曲线"

图10

围岩应力对比分析曲线"

An Y P, Zhang N, Zhao Y M,et al,2021.Field and numerical investigation on roof failure and fracture control of thick coal seam roadway[J].Engineering Failure Analysis,128:105 594.
Fan Lei, Wang Weijun, Yuan Chao,2020.Evaluation method for supporting effect of inclined soft rock roadway based on extenics[J].Journal of Mining and Safety Engineering,37(3):498-504.
Guo Ping, Shen Dafu,2021.Optimization design and numerical simulation of supporting scheme for deep mine roadway [J].Mining Safety and Environmental Protection,48(4):87-91.
He Manchao,1993. Introduction to Soft Rock Roadway Engineering[M].Beijing:China University of Mining and Technology Press.
He Manchao, Sun Xiaoming,2002.Soft Rock Engineering Mechanics[M]. Beijing:Science Press.
Hui Qiang, Zhang Jun, Jiang Haibo,2021.Study on the characteristics and distribution laws of plastic zone induced by deep-buried high-geostress hydraulic tunnelling in jointed rock mass[J].Modern Tunnelling Technology,58(4):86-94.
Kang Hongpu, Fan Mingjian, Gao Fuqiang,et al,2015.Deformation and support of rock roadway at depth more than 1000 meters[J]. Chinese Journal of Rock Mechanics and Engineering,34(11):2227-2241.
Li G, Ma F S, Guo J,et al,2020.Study on deformation failure mechanism and support technology of deep soft rock roadway[J].Engineering Geology,264:105262.
Li Guang, Ma Fengshan, Guo Jie,et al,2017. Application of steel tube confined concrete support in Jinchuan mine[J].Gold Science and Technology,25(5):57-66.
Li Guang, Ma Fengshan, Liu Gang,et al,2018. Study on supporting parametric optimizing design and evaluate supporting effect of deep roadway in Jinchuan mine[J].Gold Science and Technology,26(5):605-614.
Li Jing, Hu Bin, Liu Yanzhang,et al,2021.Improved catastrophe progression method for evaluating supporting effect of bolts in mining roadway[J].China Safety Science Journal,31(3):60-65.
Li Qiyue, Chen Liang, Fan Zuopeng,et al,2013. ARMA model and its application in prediction of underground engineering supporting effect[J].Mining and Metallurgical Engineering,33(3):8-12.
Liu Haiyan, Zuo Jianping, Liu Dejun,et al,2021. Optimization of roadway bolt support based on orthogonal matrix analysis[J].Journal of Mining and Safety Engineering,38(1):84-93.
Ni Haiming,2021.Application and safety evaluation of yielding support in deep high stress roadway[J].Coal and Chemical Industry,44(1):17-20.
Pan Rui, Wang Lei, Cai Yi,et al,2021.Analysis of flat roof stability in deep roadway and its repair control[J]. Journal of Mining and Safety Engineering,38(4):756-765.
Pu Chunyan, Liu Bin, Li Zhongnan,et al,2021.Analysis of stress evolution characteristics of deep roadway excavation[J].Metal Mine,50(2):41-52.
Shen Yanmei, Wei Sijiang,2011.Fuzzy comprehensive evaluation of bolt support effects in deep-mining gateway[J].Journal of Mining and Safety Engineering,28(4):576-580.
Song Tao,2019.Study on Support Design and Effect Evaluation of S1201 Mining Roadway in Ningtiaota Coal Mine[D].Xi’an:Xi’an University of Science and Technology.
Sun Qihao, Ma Fengshan, Wan Yang,et al,2021.Numerical simulations of excavation damage in deep roadways of Jinchuan mining area[J].Journal of Engineering Geology,29(4):1017-1027.
Tang B, Mathias Y, Cheng H,et al,2021.Numerical study and field performance of rockbolt support schemes in TBM-excavated coal mine roadways:A case study[J].Tunnelling and Underground Space Technology,115:104053.
Wan Chuanchuan, Li Xibing, Ma Chunde,2012.Optimization of support technology for deep soft rock roadway based on field measurement of excavation damage[J]. Mining and Metallurgical Engineering,32(1):12-16.
Wang G F, Li G, Dou L M,et al,2020.Applicability of energy-absorbing support system for rockburst prevention in underground roadways[J].International Journal of Rock Mechanics and Mining Sciences,132:104396.
Wang Weijun, Han Sen, Dong Enyuan,2021. Boundary equation of plastic zone in roadway surrounding rocks considering supporting effect and its application[J].Journal of Mining and Safety Engineering,38(4):749-755.
Wang Xinfeng, He Yi, Lu Mingyuan,et al,2021.Study on deformation and failure characteristics of deep roadway surrounding rock under excavation unloading disturbance[J].China Safety Science Journal,31(8):83-90.
Xia Xicen,2021.Inverse Analysis of Tunnel Surrounding Rock Based on DE-BP Neural Network and Research of Support Parameters[D].Dalian:Dalian University of Technology.
Xie Heping,2019. Research review of the state key research development program of China:Deep rock mechanics and mining theory [J].Journal of China Coal Society,44(5):1283-1305.
Yu K P, Ren F Y, Puscasu R,et al,2020.Optimization of combined support in soft-rock roadway[J].Tunnelling and Underground Space Technology,103:103502.
Zheng Keyue, Shi Chenghua, Lei Mingfeng,et al,2021.Stability analysis and support design optimization of large-deformation tunnels in structural fracture zones with high in-situ stresses considering loose effect[J].Chinese Journal of Ro-ck Mechanics and Engineering,40(8):1603-1613.
范磊,王卫军,袁超,2020.基于可拓学倾斜软岩巷道支护效果评价方法[J].采矿与安全工程学报,37(3):498-504.
郭平,沈大富,2021.深部巷道支护方案优化设计及数值模拟研究[J].矿业安全与环保,48(4):87-91.
何满潮,1993.软岩巷道工程概论[M].北京:中国矿业大学出版社.
何满潮,孙晓明,2002.软岩工程力学[M].北京:科学出版社.
惠强,张军,姜海波,2021. 深埋高地应力水工隧洞节理岩体开挖塑性区特征及分布规律研究[J]. 现代隧道技术,58(4):86-94.
康红普,范明建,高富强,等,2015.超千米深井巷道围岩变形特征与支护技术[J].岩石力学与工程学报,34(11):2227-2241.
李光,马凤山,郭捷,等,2017.U钢管混凝土支架支护技术在金川矿山的应用[J].黄金科学技术,25(5):57-66.
李光,马凤山,刘港,等,2018.金川矿区深部巷道支护效果评价及参数优化研究[J].黄金科学技术,26(5):605-614.
李京,胡斌,刘艳章,等,2021.回采巷道锚杆支护效果评判的改进突变级数法[J].中国安全科学学报,31(3):60-65.
李启月,陈亮,范作鹏,等,2013.地下工程支护效果的ARMA预测模型及应用[J].矿冶工程,33(3):8-12.
刘海雁,左建平,刘德军,等,2021.基于正交矩阵分析的巷道锚杆支护优化[J].采矿与安全工程学报,38(1):84-93.
倪海明,2021.深部高应力巷道让压支护的应用及安全评价[J].煤炭与化工,44(1):17-20.
潘锐,王雷,蔡毅,等,2021.深部巷道平顶稳定性分析及返修控制研究[J].采矿与安全工程学报,38(4):756-765.
蒲春艳,刘滨,李中楠,等,2021. 深部巷道开挖应力演化特征分析[J]. 金属矿山,50(2):41-52.
申艳梅,韦四江,2011.回采巷道锚杆支护效果模糊综合评判[J].采矿与安全工程学报,28(4):576-580.
宋涛,2019. 柠条塔煤矿S1201回采巷道支护设计及效果评价研究[D].西安:西安科技大学.
孙琪皓,马凤山,万洋,等,2021.金川矿区深部巷道开挖损伤数值模拟研究[J].工程地质学报,29(4):1017-1027.
万串串,李夕兵,马春德,2012.基于围岩松动圈现场测试的深部软岩巷道支护技术优化[J].矿冶工程,32(1):12-16.
王卫军,韩森,董恩远,2021.考虑支护作用的巷道围岩塑性区边界方程及应用[J].采矿与安全工程学报,38(4):749-755.
王新丰,何毅,陆明远,等,2021.开挖卸荷扰动深部巷道围岩变形破坏特征研究[J].中国安全科学学报,31(8):83-90.
夏溪岑,2021. 基于DE-BP神经网络的隧道围岩反演分析及支护参数研究[D].大连:大连理工大学.
谢和平,2019.深部岩体力学与开采理论研究进展[J].煤炭学报,44(5):1283-1305.
郑可跃,施成华,雷明锋,等,2021.考虑松动效应的高地应力构造破碎带隧道稳定性分析及大变形支护设计优化[J].岩石力学与工程学报,40(8):1603-1613.
[1] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[2] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[3] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[4] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[5] 唐宇,王少锋. 单向受限应力下镐型截齿破岩特性及其影响因素分析[J]. 黄金科学技术, 2021, 29(5): 669-679.
[6] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[7] 景岳,王少锋,鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534.
[8] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[9] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[10] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[11] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[12] 谢学斌,高山,过江,叶永飞. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021, 29(2): 226-235.
[13] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[14] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[15] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!