img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (4): 612-622.doi: 10.11872/j.issn.1005-2518.2022.04.025

• 采选技术与矿山管理 • 上一篇    

油罐爆炸作用下隧道衬砌动力响应数值模拟研究

周占星(),刘科伟(),李旭东,黄晓辉,马泗洲   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2022-01-21 修回日期:2022-05-16 出版日期:2022-08-31 发布日期:2022-10-31
  • 通讯作者: 刘科伟 E-mail:zzx1230@csu.edu.cn;kewei_liu@126.com
  • 作者简介:周占星(1995-),男,河北张家口人,硕士研究生,从事隧道在油罐爆炸作用下的损伤及稳定性研究工作。zzx1230@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目“深部高应力岩体环境深孔一次爆破成井机理与方法研究”(51974360)

Numerical Simulation of Dynamic Response of Tunnel Lining Under Oil Tank Explosion

Zhanxing ZHOU(),Kewei LIU(),Xudong LI,Xiaohui HUANG,Sizhou MA   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2022-01-21 Revised:2022-05-16 Online:2022-08-31 Published:2022-10-31
  • Contact: Kewei LIU E-mail:zzx1230@csu.edu.cn;kewei_liu@126.com

摘要:

为准确分析油气爆炸下隧道及采矿巷道等地下工程的结构稳定性,采用FLACS软件计算LPG爆炸荷载,基于LS-DYNA软件将爆炸冲击荷载施加于结构表面,进而计算爆炸荷载作用下衬砌结构动力响应。研究结果表明:隧道的“角状结构”对冲击波反射具有强化作用,致使相应位置形成应力集中,应力波强度衰减缓慢,随着传播距离的增加,衬砌所受应力逐渐减小且同一截面应力值趋于一致;同一截面不同测点处的速度、位移值受爆心距和隧道几何结构的共同影响,当爆心距大于12 m时,速度和位移值变化趋于稳定;顶部衬砌和底部结构更易发生破坏,边墙位置损伤程度较小。该研究成果为地下工程安全稳定性分析提供了方法依据,也为巷道抗爆设计及支护优化提供了理论参考。

关键词: 隧道衬砌, 液化石油气, 油罐爆炸, 数值模拟, 动力响应

Abstract:

The dynamic response of underground engineering such as tunnel and mining roadway under the action of the explosion load of oil and gas is an important basis for engineering protection design and safety evaluation.The development of dynamic numerical simulation method in line with the characteristics of oil and gas explosion is of great significance for accurately analyzing the stability of underground engineering structures such as tunnel and mining roadway under liquefied petroleum gas (LPG) explosion. In this paper,fluid computational mechanics software FLACS was used to calculate the LPG explosion load in the tunnel. Based on transient dynamic analysis software LS-DYNA,the blast impact load was applied to the tunnel lining surface,and then the dynamic response of lining structure at different distances from the explosion center was calculated.By comparing the peak value of overpressure obtained by simulation with the calculation results of the empirical formula,the coincidence between the peak value of overpressure obtained by simulation and the calculation results of the empirical formula is high,which shows that the simulation method used in this paper has good applicability for analyzing the structural response of tunnel under LPG explosion in tunnel.Based on the numerical simulation results,the variation laws of stress,displacement and velocity of lining structure under LPG explosion load were studied.The results show that the “angular structure” of the tunnel has a strengthening effect on the reflection of shock wave,resulting in the formation of stress concentration at the corresponding position and the slow attenuation of the stress wave intensity.With the increase of the propagation distance,the stress on the lining decreases gradually and the stress value of the same section tends to be consistent.In addition,the velocity and displacement values at different measuring points on the same section are affected by the distance between measuring point and explosion center and the geometric structure of the tunnel.When the distance between measuring point and explosion center is larger than 12 m,the velocity and displacement values tend to be stable.The damage of top lining and bottom structure is more likely to occur under the action of blast load,and the damage degree of sidewall position is less.The research results provide a method basis for the safety and stability analysis of underground structures,and also have a certain reference value for the anti-explosion design of mining roadway structure and the corresponding support optimization in mining.

Key words: tunnel lining, liquefied petroleum gas (LPG), oil tank explosion, numerical simulation, dynamic response

中图分类号: 

  • TE834

图1

爆炸荷载时程曲线"

图2

爆炸荷载的计算及加载"

图3

隧道断面尺寸"

图4

数值计算模型"

图5

分区和测点分布图"

图6

H-J-C模型状态方程曲线"

表1

H-J-C模型的计算参数"

参数含义取值参数含义取值参数含义取值
ρ0/(kg?m-3密度2 440μc体积应变0.001G/GPa剪切模量14.86
fc/MPa单轴抗压强度48K1/GPa压力常数85D1损伤常数0.04
A黏性强度系数0.79K2/GPa压力常数-171D2损伤常数1.0
B压力硬化系数1.6K3/GPa压力常数208EFMIN最小塑形应变0.01
N压力硬化指数0.61pl/GPa锁定压力0.8T/MPa单轴抗拉强度4
C应变率系数0.007μl锁定体积应变0.100ε参考应变率1e-6
Pc/MPa静水压力16SMAX最大等效应力7.0fs失效参数0.004

图7

数值模拟结果与经验公式计算结果对比"

图8

应力波横向传播特征"

图9

应力波纵向传播特征"

图10

隧道衬砌上测点示意图"

图11

衬砌结构位移响应曲线"

图12

衬砌结构速度响应曲线"

Berg A, Voort M, Weerheijm J,et al,2004.Expansion-controlled evaporation:A safe approach to BLEVE blast[J].Journal of Loss Prevention in the Process Industries,17(6):397-405.
Berg A, Voort M, Weerheijm J,et al,2006.BLEVE blast by expansion-controlled evaporation[J].Process Safety Progre-ss,25(1):44-51.
Birk A M, Davison C, Cunningham M,2007.Blast overpressures from medium scale BLEVE tests[J].Journal of Loss Prevention in the Process Industries,20(3):194-206.
CCPS,2011.Guidelines for vapor cloud explosion,pressure vessel burst,BLEVE,and flash fire hazards[J].Process Safety Progress,30(2):187.
Chen Lei, Ye Qing,2021.Numerical simulation of the effect of gas explosion on tunnel lining stress[J].Mining Engineering Research,36(3):40-47.
Deng Zhaoyu,2020.Numerical simulation study on damage and failure of roadway wall caused by gas explosion[J].Science Technology and Engineering,20(5):1792-1798.
Ding Yuqi, Ye Bitao, Lu Ye,et al,2021.Implosion load calculation and structural failure analysis of storage tank based on different equivalent methods[J].Chemical Machinery,48(1):35-43.
Guo Y B, Liu C C, Wang D G,et al,2018.Numerical study and safety spacing of buried parallel gas pipelines:A study based on TNT equivalent method[J].International Journal of Pressure Vessels and Piping,168:246-257.
Hao H, Hao Y F, Li J,et al,2016.Review of the current practices in blast-resistant analysis and design of concrete structures[J].Advances in Structural Engineering,19(8):1193-1223.
Holmquist T J, Johnson G R, Cook W H,1993.A computational constitutive model for concrete subjected to large strains,high strain rates and high pressures[C]// Proceeding of 14th International Symposium on Ballistics.Quebec:BIC: 591-600.
Lai H P, Wang S Y, Xie Y L,2016.Study on the fire damage characteristics of the new Qidaoliang highway tunnel:Field investigation with computational fluid dynamics(CFD)back analysis[J].International Journal of Environmental Research and Public Health,13(10):1014.
Li J D, Hao H,2020.Numerical study of medium to large scale BLEVE for blast wave prediction[J].Journal of Loss Prevention in the Process Industries,65:104107.
Li J D, Hao H,2021.Numerical simulation of medium to large scale BLEVE and the prediction of BLEVE’s blast wave in obstructed environment[J].Process Safety and Environmental Protection,145:94-109.
Li Z P, Wu S C, Cheng Z Q,et al,2018.Numerical investigation of the dynamic responses and damage of linings subjected to violent gas explosions inside highway tunnels[J].Shock and Vibration,(9):2792043.1-2792043.20.
Li Z, Chen L, Fang Q,et al,2019.Experimental and numerical study on CFRP strip strengthened clay brick masonry walls subjected to vented gas explosions[J].International Journal of Impact Engineering,129(1):66-79.
Li Zhipeng, Wu Shunchuan,2018.Damage mechanism of tunnel entrance caused by violent gas explosion[J].Journal of Engineering Science,40(12):1476-1487.
Liu K W, Li X D, Hao H,et al,2019.Study on the raising technique using one blast based on the combination of long-hole presplitting and vertical crater retreat multiple-deck shots[J].International Journal of Rock Mechanics and Mining Sciences,113:41-58.
Liu K W, Yang J C, Li X B,et al,2018.Study on the long-hole raising technique using one blast based on vertical crater retreat multiple deck shots[J].International Journal of Rock Mechanics and Mining Sciences,109:52-67.
Liu Weiwei, Cheng Kai, Ren Hongxia,2019.Numerical simulation of tunnel gasoline explosion based on FLACS[J].Journal of Beihua University(Natural Science Edition),20(3):395-401.
Liu Yang, Li Zhan, Zhang Yadong,et al,2021.Safety assessment of gas cloud explosion in a city gas storage and distribution station based on FLACS[J].Chinese Journal of High Pressure Physics,35(1):117-131.
LS-DYNA,2013.Keyword User’s Manual[M].Version 971.Livermore,CA:Livermore Software Technology Corporation(LSTC).
Masellis M,2000.Fire disaster in a motorway tunnel[J].Prehospital Disaster Medicine,15(Supp.2):S74.
Molenaar D J, Weerheijm J, Vervuurt A,et al,2009.Bijzondere belastingen in tunnels:Eindrapport[J].Delft Cluster,TC 211-05-09.
Peng Pei, Li Zhan, Zhang Yadong,et al,2020.Performance of retrofitted autoclaved aerated concrete masonry walls subjected to gas explosions[J].Explosion and Shock Waves,40(3):107-120.
Pennetier O, William-Louis M, Langlet A,2015.Numerical and reduced-scale experimental investigation of blast wave shape in underground transportation infrastructure[J].Process Safety and Environmental Protection,94:96-104.
Vervuurt A H J M, Galanti F M B, Wubsi A J,et al,2007.Effect of explosions in tunnels-Preliminary assessment of the structural response[J].Delft Cluster,2007-DR0156/A.
Wang Haiyang, Zhao Shulei, Chen Xiang,et al,2021.Statistics and influencing factors analysis of tunnel gas accidents in China[J].China Safety Science Journal,31(4):34-40.
Wang S P, Li Z, Fang Q,et al,2021.Performance of utility tunnels under gas explosion loads[J].Tunnelling and Underground Space Technology,109:103762.
Yang Kezhi, Yang Xiumin,2003.Shock waves propagation insi-de tunnels[J].Explosion and Shock Waves,23(1):37-40.
陈雷,叶青,2021.瓦斯爆炸对隧道衬砌应力影响的数值模拟[J].矿业工程研究,36(3):40-47.
邓照玉,2020.瓦斯爆炸对巷道壁面损伤破坏的数值模拟研究[J].科学技术与工程,20(5):1792-1798.
丁宇奇,叶碧涛,芦烨,等,2021.基于不同等效方法的储罐内爆载荷计算与结构破坏分析[J].化工机械,48(1):35-43.
李志鹏,吴顺川,2018.剧烈瓦斯爆炸隧道洞口致损机理[J].工程科学学报,40(12):1476-1487.
刘维维,成凯,任红霞,2019.基于FLACS的隧道汽油爆炸数值模拟[J].北华大学学报(自然科学版),20(3):395-401.
刘洋,李展,张亚栋,等,2021.基于FLACS的某城市燃气储配站气云爆炸安全评估[J].高压物理学报,35(1):117-131.
彭培,李展,张亚栋,等,2020.燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能[J].爆炸与冲击,40(3):107-120.
王海洋,赵树磊,陈祥,等,2021.我国瓦斯爆炸事故统计及影响因素分析[J].中国安全科学学报,31(4):34-40.
杨科之,杨秀敏,2003.坑道内化爆冲击波的传播规律[J].爆炸与冲击,23(1):37-40.
[1] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[2] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[3] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[4] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[5] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[6] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[7] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[8] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[9] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[10] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[11] 谢学斌,高山,过江,叶永飞. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021, 29(2): 226-235.
[12] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[13] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[14] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[15] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!