img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (5): 803-810.doi: 10.11872/j.issn.1005-2518.2023.05.058

• 采选技术与矿山管理 • 上一篇    下一篇

层理结构板岩动态断裂特性

张玉1,2(),王文己1,2,孙加奇3,肖永刚2   

  1. 1.中建六局水利水电建设集团有限公司,天津 300350
    2.中国建筑第六工程局有限公司工程技术研究院,天津 300171
    3.华侨大学土木工程学院,福建 厦门 361021
  • 收稿日期:2023-04-19 修回日期:2023-08-03 出版日期:2023-10-31 发布日期:2023-11-21
  • 作者简介:张玉(1987-),男,河南南阳人,工程师,从事水利水电工程技术设计和科技研发工作。zhangyu871030@163.com
  • 基金资助:
    中建六局科技研发计划资助课题“复杂环境条件下输水隧洞爆破施工关键技术研究”(CSCEC6B-2020-Z-12);国家自然科学基金项目“爆破震动诱发深部巷道围岩时效破坏机制与损伤模型”(51974136)

Fracture Performances of Bedding Structure Slate Under Dynamic Loading

Yu ZHANG1,2(),Wenji WANG1,2,Jiaqi SUN3,Yonggang XIAO2   

  1. 1.China Construction Sixth Engineering Bureau Hydropower Construction Co. , Ltd. , Tianjin 300350, China
    2.Institute of Engineering Technology, China Construction Sixth Engineering Bureau Co. , Ltd. , Tianjin 300171, China
    3.College of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian, China
  • Received:2023-04-19 Revised:2023-08-03 Online:2023-10-31 Published:2023-11-21

摘要:

基于动力冲击试验和插入黏聚力单元数值模拟方法,对层理结构板岩中心直切槽半圆盘(NSCB)试样在不同冲击速度和层理面倾角下的断裂性能展开研究。讨论了含层理结构岩样中的裂纹路径及其断裂参数。结果表明:冲击速度和层理面倾角对层理结构板岩裂纹扩展影响明显,在冲击速度较小的条件下,裂纹倾向于沿薄弱层理面扩展;随着冲击速度的增加,裂纹沿薄弱层理面扩展的长度逐渐减小,裂纹扩展路径更倾向于忽略薄弱层理面的影响,直接向加载点扩展。在冲击速度一定的情况下,裂纹沿薄弱层理面扩展的长度随层理面倾角的增加亦减小。随着冲击速度的增加,层理结构板岩的断裂韧度也逐渐增加;在给定冲击速度的条件下,层理结构板岩的断裂韧度随着层理面倾角的增加而增大。

关键词: 层理结构, 动力冲击, 数值模拟, 开裂模式, 断裂韧度

Abstract:

Bedding structure slate can be always observed in civil and mining engineering in recent years,their physical and mechanical properties are significantly controlled by the existing bedding planes,which are generally considered as weak links that can cause various geological disasters.The fracture behavior of bedding structure slate under dynamic loading is therefore a critical issue for the selection of blasting parameters,stability analysis of rock mass,collapse and burst disaster prevention in tunnel,drift,and other underground structures.In order to investigate the effects of the inclination angle of bedding plane and impact velocity on the dynamic fracture behavior of bedding structure slate,the dynamic impact test and numerical simulation method inserted cohesive element were conducted on the notched semicircular bending(NSCB) specimens by a split-Hopkinson pressure bar(SHPB)system.Tests of NSCB specimens under static loading were conducted for comparison,and the inserted cohesive element method was also used to develop the numerical model of layered NSCB specimens under dynamic loading.The fracture initiation and propagation process of the layered specimen under varied loading conditions were modeled.The results show:(1)Impact velocity and the inclination angle of bedding plane has obvious influence on the crack propagation,and three typical cracking paths can be found for NSCB specimens under both static and dynamic loading.(2)The crack propagates along the bedding plane and then directly propagates to the loading point,the cracking path evidently exhibits dependence on the impact velocity and the inclination angle of bedding plane.For specimens under static loading,the dominated crack is more likely to propagate along the bedding planes while the cracks tend to ignore bedding planes as the impact velocity or the inclination angle of bedding plane increases.At the same time,the crack length along the bedding plane is considerably reduced under dynamic loading than under static loading.(3)It is obvious that the impact velocity and the inclination angle of bedding plane have important influence on fracture toughness,it becomes larger with the increasing impact velocity or the inclination angle of bedding plane.

Key words: bedding structure, dynamic impact, numerical simulation, cracking mode, fracture toughness

中图分类号: 

  • U45

图1

2种单元连接示意图"

图2

黏聚单元本构模型"

图3

层理结构岩石几何模型"

图4

嵌入黏聚单元的层理结构板岩有限元网格"

图5

分离式霍普金森压杆试验装置"

表1

层理结构板岩试样物理力学参数"

θ/(°)fr/MPaEr/GPaμrρ/(kg·m-3
0196.0095.1650.0922.62×103
1584.9953.6960.071
3070.8137.7680.230
4561.1224.4360.280
6083.1423.8030.318

图6

岩样加工过程1-层状岩体;2-钻取岩心;3-切割圆盘;4-NSCB试样"

图7

试样动态力平衡检验"

图8

冲击作用下层理结构板岩破坏模式对比"

图9

不同冲击速度下裂纹扩展路径对比"

图10

冲击速度对裂纹层理面长度的影响"

图11

用于计算应力强度因子的有限元网格"

图12

无量纲应力强度因子"

表2

层理结构板岩动态冲击试验结果"

倾角/(o冲击速度/(m·s-1峰值荷载/N断裂韧度/(MPa·mm0.5
0123 928.32212.58
204 935.74267.09
256 453.85349.24
15124 296.16232.48
205 500.20297.64
256 152.45332.93
30123 920.10212.13
205 943.53321.63
256 646.04359.64
45125 131.72277.70
206 297.23340.77
257 238.87391.72
60125 290.28286.28
206 179.06334.37
258 088.75437.71
75125 416.12293.09
206 454.50349.28
257 558.56409.02
90126 505.87352.06
207 287.28394.34
257 947.93430.09

图13

层理结构板岩动态断裂韧度"

Chang X, Lu J Y, Wang S Y,et al,2017.Formation of cracks in layered rock considering layer thickness variations [J].Geophysical Journal International,210(3):1623-1640.
Chen D F, Feng X T, Xu D P,et al,2016.Use of an improved ANN model to predict collapse depth of thin and extremely thin layered rock strata during tunnelling[J].Tunnelling and Underground Space Technology,51:372-386.
Dai F, Xia K W,2010.Loading rate dependence of tensile strength anisotropy of barre granite[J].Pure and Applied Geophysics,167(11):1419-1432.
Deng Shuai, Zhu Zheming, Wang Lei,et al,2019.Study on the influence of in-situ stresses on dynamic fracture behaviors of cracks[J].Chinese Journal of Rock Mechanics and Engineering,38(10):1989-1999.
Gong Fengqiang, Wang Jin, Li Xibing,2018.The rate effect of compression characteristics and a unified model of dyna-mic increasing factor for rock materials[J].Chinese Journal of Rock Mechanics and Engineering,37(7):1586-1595.
Li Diyuan, Gao Feihong, Liu Meng,et al,2021.Research on failure mechanism of stratified sandstone with pre-cracked hole under combined static-dynamic loads[J].Rock and Soil Mechanics,42(8):2127-2140.
Li Qing, Guo Yang, Tian Ce,et al,2016.Effect of material crack flaws on dynamic fracture behavior[J].Science Technology and Engineering,16(28):1-5.
Li Xiang, Huai Zhen, Li Xibing,et al,2019.Study on fracture characteristics and mechanical properties of brittle rock based on crack propagation mode[J].Gold Science and Technology,27(1):41-51.
Lu C, Sun Q, Zhang W Q,et al,2017.The effect of high temperature on tensile strength of sandstone[J].Applied Thermal Engineering,111:573-579.
Shen W L, Shi G C, Wang Y G,et al,2021.Tomography of the dynamic stress coefficient for stress wave prediction in sedimentary rock layer under the mining additional stress [J].International Journal of Mining Science and Technology,31(4):653-663.
Shi X S, Liu D A, Yao W,et al,2018.Investigation of the anisotropy of black shale in dynamic tensile strength[J].Arabian Journal of Geosciences,11(2):1-11.
Shoeb M, Khan S A, Alam T,et al,2023.Dynamic stability analysis of metro tunnel in layered weathered sandstone[J].Ain Shams Engineering Journal: 102258..
Wen Ming, Xu Jinyu, Wang Haoyu,et al,2017.Fractography analysis of sandstone failure under low temperature-dynamic loading coupling effects[J].Chinese Journal of Rock Mechanics and Engineering,36(Supp.2):3822-3830.
Wen S, Zhang C S, Chang Y L,2020.Dynamic compression characteristics of layered rock mass of significant strength changes in adjacent layers[J].Journal of Rock Mechanics and Geotechnical Engineering,12(2):353-365.
Xiao Fukun, Wang Houran, Zhang Rui,et al,2018.Fracture characteristics underlying sandstones under different impact loading[J].Journal of Heilongjiang University of Science and Technology,28(6):603-607.
Yang Liyun, Wang Qingcheng, Ding Chenxi,et al,2020.Experimental analysis on the mechanism of slotting blasting in deep rock mass[J].Journal of Vibration and Shock,39(2):40-46.
Zhang Sheng, Wang Qizhi, Xie Heping,2008.Size effect of rock dynamic fracture toughness [J].Explosion and Shock Waves,28(6):544-551.
Zhao Fujun, Xie Shiyong, Pan Jianzhong,et al,2011.Numerical simulation and experimental investigation on rock fragmentation under combined dynamic and static loading[J].Chinese Journal of Geotechnical Engineering,33(8):1290-1295.
Zhao Guangming, Ma Wenwei, Meng Xiangrui,2015.Damage modes and energy characteristics of rock-like materials under dynamic load[J].Rock and Soil Mechanics,36(12):3598-3605.
Zhou Shengquan, Wang Rui, Tian Nuocheng,et al,2022.Research on dynamic mechanical properties of heat-treated granite under impact loading [J].Gold Science and Technology,30(2):222-232.
邓帅,朱哲明,王磊,等,2019.原岩应力对裂纹动态断裂行为的影响规律研究[J].岩石力学与工程学报,38(10):1989-1999.
宫凤强,王进,李夕兵,2018.岩石压缩特性的率效应与动态增强因子统一模型[J].岩石力学与工程学报,37(7):1586-1595.
李地元,高飞红,刘濛,等,2021.动静组合加载下含孔洞层状砂岩破坏机制探究[J].岩土力学,42(8):2127-2140.
李清,郭洋,田策,等,2016.不同角度裂纹缺陷对材料动态断裂行为的影响[J].科学技术与工程,16(28):1-5.
李响,怀震,李夕兵,等,2019.基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J].黄金科学技术,27(1):41-51.
闻名,许金余,王浩宇,等,2017.低温—动荷载耦合作用下砂岩破坏断口的形貌分析[J].岩石力学与工程学报,36(增2):3822-3830.
肖福坤,王厚然,张睿,等,2018.不同冲击加载作用下砂岩的破碎特征[J].黑龙江科技大学学报,28(6):603-607.
杨立云,王青成,丁晨曦,等,2020.深部岩体中切槽爆破机理实验分析[J].振动与冲击,39(2):40-46.
张盛,王启智,谢和平,2008.岩石动态断裂韧度的尺寸效应[J].爆炸与冲击,28(6):544-551.
赵伏军,谢世勇,潘建忠,等,2011.动静组合载荷作用下岩石破碎数值模拟及试验研究[J].岩土工程学报,33(8):1290-1295.
赵光明,马文伟,孟祥瑞,2015.动载作用下岩石类材料破坏模式及能量特性[J].岩土力学,36(12):3598-3605.
周盛全,王瑞,田诺成,等,2022.冲击荷载作用下热处理花岗岩动态力学特性研究[J].黄金科学技术,30(2):222-232.
[1] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[2] 王卫华, 李凯, 黄瑞新. 热冲击对花岗岩动态断裂行为的影响研究[J]. 黄金科学技术, 2023, 31(5): 752-762.
[3] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[4] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[5] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[6] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[7] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[8] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[9] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[10] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[11] 范晓冬,李响,陶明,尹土兵,李夕兵. 不同热冲击过程花岗岩I型和Ⅱ型断裂特性研究[J]. 黄金科学技术, 2021, 29(6): 834-842.
[12] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[13] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[14] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[15] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!