img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (6): 944-952.doi: 10.11872/j.issn.1005-2518.2023.06.053

• 采选技术与矿山管理 • 上一篇    下一篇

一体化聚能水压爆破技术在软弱围岩隧道的应用

甘会莲1(),蒋新闻1,陈志伟1,乔永昕1,陈淑华1,王建国2()   

  1. 1.云南交投公路建设第六工程有限公司,云南 昆明 650100
    2.昆明理工大学国土资源工程学院,云南 昆明 650093
  • 收稿日期:2023-04-06 修回日期:2023-08-30 出版日期:2023-12-31 发布日期:2024-01-26
  • 通讯作者: 王建国 E-mail:450580851@qq.com;wangjg0831@163.com
  • 作者简介:甘会莲(1976-),女,云南昆明人,高级工程师,从事项目管理和技术开发方面的研究工作。450580851@qq.com
  • 基金资助:
    2021年云南交投科技创新计划项目“高原山区高速公路隧道新型聚能水压爆破施工关键技术研究及工程示范”(YCYC-YF-2021-14);2022年云南省基础研究计划面上项目“水压爆破波衰减规律及岩石致裂机理研究”(202201AT070178)

Application of Integrated Shaped Water Pressure Blasting Technology in Soft and Weak Surrounding Rock Tunnels

Huilian GAN1(),Xinwen JIANG1,Zhiwei CHEN1,Yongxin QIAO1,Shuhua CHEN1,Jianguo WANG2()   

  1. 1.YCIC Highway Construction Sixth Co. , Ltd. , Kunming 650100, Yunnan, China
    2.Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Received:2023-04-06 Revised:2023-08-30 Online:2023-12-31 Published:2024-01-26
  • Contact: Jianguo WANG E-mail:450580851@qq.com;wangjg0831@163.com

摘要:

针对传统光面爆破技术在隧道Ⅳ级和Ⅴ级软弱围岩中应用时常出现的超挖和进尺率低等问题,基于聚能水压光面爆破技术的原理及应用现状,设计了一种轴向多孔聚能管,通过将管内水袋、药卷交替间隔搭配导爆索和数码电子雷管形成一体化聚能水压装药结构,并在云南勐省隧道Ⅳ级围岩区域开展了连续装药光面爆破、水袋间隔光面爆破、空气间隔光面爆破和聚能水压光面爆破4种试验。爆后使用测距仪、卷尺和标杆对循环进尺、半孔率和超欠挖等爆破技术指标进行测量。试验结果表明:前3种试验的半孔率依次为13%、45%和38%,一个循环进尺依次为3.40 m、3.50 m和3.45 m,轮廓面围岩破碎存在超欠挖现象,而采用一体化装药结构的聚能水压光面爆破后的半孔率达62%,一个循环进尺为3.60 m,试验区域轮廓线比较平整,没有明显的超欠挖现象。现场应用结果表明:新型一体化聚能水压爆破在软弱围岩隧道周边轮廓平整度控制中效果显著,在减少钻孔数量和炸药量的同时,保持了围岩的完整性,是一种环保、节能的控制爆破技术。

关键词: 光面爆破, 隧道掘进, 软弱围岩, 聚能水压爆破, 一体化装药结构

Abstract:

There are few rugged plains in southwest China,and tunnel construction plays an important role in southwest China.However,when the tunnel is excavated by blasting in grade Ⅳ and Ⅴ weak surrounding rock,the traditional continuous charge smooth blasting technology often has problems such as over-excavation,low footage rate and large fragmentation after blasting.In order to solve such problems,based on the principle and application status of shaped water pressure smooth blasting technology,an axial porous shaped charge tube was designed.The integrated shaped water pressure structure was formed by alternately arranging the water bag and cartridge in the tube with detonating cord and digital electronic detonator.Four kinds of tests were carried out in the Ⅳ surrounding rock area of Mengsheng tunnel in Yunnan Province,including continuous charge smooth blasting,water bag interval smooth blasting,air interval smooth blasting and shaped water pressure smooth blasting.In order to maintain comparability,15 holes at the vault position were selected for the four tests.The blasting effect was checked one hour after blasting,and the blasting technical indexes such as single cycle footage,half-hole rate and overbreak and underbreak were measured by using range finder,tape and benchmark.The test results show that the half-hole rates of continuous charge smooth blasting,water bag interval smooth blasting and air interval smooth blasting are 13%,45% and 38% respectively,and the footage of one cycle is 3.40 m,3.50 m and 3.45 m respectively.The surrounding rock of the contour surface is broken and there is overbreak and underbreak phenomenon,while the half-hole rate of the shaped water pressure smooth blasting with integrated charge structure is 62%.The contour of a test area with a cycle footage of 3.60 m is relatively flat,there is no obvious over-excavation phenomenon,and the gravel after blasting is small.The comparison between the control test groups verifies the superiority of the energy-gathering structure based on plastic pipe research and development.The field application shows that the new shaped water pressure blasting has a significant effect on the flatness control of the surrounding contour of the weak surrounding rock tunnel.While reducing the number of boreholes and the amount of explosives,it maintains the integrity of the surrounding rock.It is an environmentally friendly and energy-saving controlled blasting technology.

Key words: smooth blasting, tunnel excavation, weak surrounding rock, shaped water pressure blasting, integrated charging structure

中图分类号: 

  • U455.6

图1

聚能水压爆破作用原理"

表1

岩石静态力学参数"

参数名称数值
单轴抗压强度/MPa单值124.30
单值236.70
单值322.90
平均值28.00
抗拉强度/MPa单值14.61
单值24.47
单值35.07
平均值4.72
抗剪强度(直剪)黏聚力/MPa7.02
内摩擦角/(°)31.80
单轴压缩变形静弹性模量/(×104 MPa)5.55
泊松比0.20

表2

隧道掘进爆破参数"

炮孔类型炮孔深度/m炮孔个数/个炮孔间距/m孔径/mm
合计-125--
周边孔顶拱4.0150.4~0.540
周边孔左帮4.0100.4~0.540
周边孔右帮4.0100.4~0.540
内圈孔3.5300.640
辅助孔3.5360.5~0.740
掏槽孔4.5160.4~0.640
底板孔4.581.0~1.240

表3

聚能水压光面爆破参数"

参数名称数值参数名称数值
炮孔位置拱顶平均炮孔间距/mm0.7
孔径/mm50单孔药量/kg0.9
炮孔深度/m4总药量/kg13.5
炮孔个数/个15延期时间/ms950
炮孔角度/(°)90

图2

聚能水压光面爆破炮孔布置情况"

图3

释能药包辅材结构图"

表4

多孔释能管尺寸参数"

参数名称数值参数名称数值
外径/mm38.50开口高度/mm3.00
内径/mm34.50长管长度/m1.2
壁厚/mm2.00短管长度/m0.6

表5

4组对照试验主要爆破参数"

装药结构类型孔间距/m每孔药量/卷水袋/个延期时间/ms
连续装药光面爆破0.4~0.54950
水袋间隔光面爆破0.5~0.938950
空气间隔光面爆破0.5~0.94950
聚能水压光面爆破0.5~0.938950

图4

聚能水压光面爆破装药结构"

图5

水袋间隔光面爆破装药结构"

图6

空气间隔光面爆破装药结构"

图7

3种装药方式爆破效果对比"

图8

聚能水压光面爆破效果"

表6

爆破参数及技术指标对比"

爆破方案周边孔数/个循环进尺/m半孔痕数/个半孔率/%超欠挖/m装药量/kg轮廓平整度
连续装药光面爆破153.40413±0.2018.0较差
水袋间隔光面爆破153.50845±0.1013.5一般
空气间隔光面爆破153.45738±0.1518.0一般
聚能水压光面爆破153.601562基本无13.5较好
Che Yulong,2015.Study on the Mechanism of Irregular Cartridge and the Damage of Surrounding Rock[D].Beijing:China University of Mining and Technology(Beijing).
He Guangyi,2021.Development of hydraulic blasting technology for tunnel excavation[J].Engineering Blasting,27(5):53-58.
Huang B X, Liu C Y, Fu J H,et al,2011.Hydraulic fracturing after water pressure control blasting for increased fracturing [J].International Journal of Rock Mechanics and Mining Sciences,48(6):976-983.
Li Huai, Sun Weixing, Song Pengwei,et al,2023.Principle and application of shaped energy water pressure smooth blasting technology based on C-shaped energy-concentrating tube[J].Explosive Materials,52(1):50-57.
Li Jiye, Zhang Jianxing, He Xinggui,et al,2020.Application of smooth blasting of water cushioning and sealing technology in tunnel excavation[J].Blasting,37(1):74-80.
Li Jingguo, Yang Kui,2020.Application of second generation smooth blasting technology of cumulative energy pipe with water pressure in Xiaguili tunnel[J].Modern Tunnelling Technology,57(Supp.1):1035-1041.
Li Qiyue, Zhao Xinhao, Wei Xin’ao,et al,2019.Study and application of contour control blasting technology for large section tunnel[J].Gold Science and Technology,27(3):350-357.
Li Wei, Yuan Shaoguo, Gao Wenlei,2019.Study on smooth blasting by shaped water pressure in rock roadway excavation[J].Coal Technology,38(6):25-27.
Li Zeng’en,2021.Research and application of cumulative energy hydraulic blasting technique in tunneling[J].Journal of Hunan Institute of Engineering(Natural Science Edition),31(2):84-87.
Liu Dunwen, Jiang Shulin, Tang Yu,et al,2021.Research on smooth blasting technology of tunnel passing through broken vein fault[J].Engineering Blasting,27(2):79-84.
Liu Haibo,2019.Application of the new techniques of energy-collecting hydraulic smooth blasting in the construction of Chengdu-Lanzhou railway tunnel[J].Modern Tunnelling Technology,56(2):182-187.
Liu Haibo, Bai Zonghe, Liu Xuepan,et al,2017.New technology application of tunnel excavation shaped hydraulic smooth blasting [J].Engineering Blasting,23(1):81-84.
Myasnikov V P, Guzev M T,2000.Thermo mechanical model of elastic-plastic materials with defect structures[J].Theoretical and Applied Fracture Mechanics,33(3):165-167.
Song Pengwei, Yang Xin’an, Li Huai,et al,2022.Optimization of charge structure of peripheral blasting holes based on shaped energy water pressure smooth blasting technology[J].Tunnel Construction,42(1):103-112.
Sun Yuhao, Xing Pengfei, Wu Yahua,et al,2021.Study on practice and application of controlled blasting by hydraulic energy gathering in surrounding holes of tunnel excavation[J].Construction Quality,39(11):50-53,57.
Trivedi R, Singh T N, Raina A K,2014.Prediction of blast-induced fly rock in Indian limestone mines using neural networks [J].Journal of Rock Mechanics and Geotechnical Engineering,6(5):447-454.
Wang Jianguo, Lei Lugang, Zhang Dandan,et al,2022.Research progress of shaped charge hydraulic blasting technology[J].Industrial Minerals and Processing,51(11):32-37.
Wang Wangyang,2019.Study on Rock Breaking Mechanism and Parameter Optimization of Cumulative Hydraulic Controlled Blasting in Tunnel[D].Nanning:Guangxi Univer-sity.
Wang Yanbing, Li Shuxuan, Geng Yanjie,et al,2023.Directional fracture mechanism and surrounding rock damage characteristics of slotted cartridge blasting[J].Chinese Journal of Engineering,45(4):521-532.
Wu Bo, Li Hualong, Meng Guowang,et al,2022.Numerical analysis and application of elliptical bipolar linear energy-gathering hydraulic control blasting based on SPH-FEM[J].Journal of Railway Engineering Society,39(3):87-93.
Xiong Xiaochen,2020.Design of drilling and blasting parameters for hard rock mine tunnel construction by rock drilling jumbo[J].China Mining Magazine,29(6):117-120,126.
Xiong Yanlin, Zhong Yupei, Qi Yanjun,et al,2019.Simulation test of shaped charge blasting in shaping control of tunnel excavation[J].Explosive Materials,48(4):54-59.
Yan Hailun,2020.Research and Application of Gathering Water Pressure Smooth Surface Blasting of Long and Large Mountain Tunnel[D].Qingdao:Shandong University of Science and Technology.
Zhang Yuming, Yuan Yongfeng, Zhang Qi,2001.The slit-charge breaking rock mechanism and application[J].Explosive Materials,30(5):5-8.
车玉龙,2015.异形药包爆破作用机理及对围岩的损伤效应研究[D].北京:中国矿业大学(北京).
何广沂,2021.隧道掘进水压爆破技术发展[J].工程爆破,27(5):53-58.
李淮,孙卫星,宋鹏伟,等,2023.基于C型聚能管的聚能水压光面爆破技术原理及应用[J].爆破器材,52(1):50-57.
李继业,张剑兴,何兴贵,等,2020.水垫封光面爆破技术在隧道掘进中的应用研究[J].爆破,37(1):74-80.
李敬国,杨奎,2020.第二代聚能管水压光面爆破技术在下归里隧道的应用[J].现代隧道技术,57(增1):1035-1041.
李启月,赵新浩,魏新傲,等,2019.大断面隧道轮廓控制爆破技术研究与应用[J].黄金科学技术,27(3):350-357.
李伟,袁绍国,高文磊,2019.聚能水压光面爆破在岩巷掘进中的研究[J].煤炭技术,38(6):25-27.
李增恩,2021.隧道掘进聚能水压爆破技术的研究与应用[J].湖南工程学院学报(自然科学版),31(2):84-87.
刘敦文,江树林,唐宇,等,2021.穿越脉状破碎断层隧道光面爆破技术研究[J].工程爆破,27(2):79-84.
刘海波,2019.聚能水压光面爆破新技术在成兰铁路隧道施工中的应用[J].现代隧道技术,56(2):182-187.
刘海波,白宗河,刘学攀,等,2017.隧道掘进聚能水压光面爆破新技术与应用[J].工程爆破,23(1):81-84.
宋鹏伟,杨新安,李淮,等,2022.基于聚能水压光爆技术的周边眼装药结构优化研究[J].隧道建设,42(1):103-112.
孙余好,邢鹏飞,吴亚华,等,2021.隧洞掘进周边孔水压聚能控制爆破实践与应用研究[J].工程质量,39(11):50-53,57.
王建国,雷露刚,张丹丹,等,2022.聚能水压爆破技术研究进展[J].化工矿物与加工,51(11):32-37.
王汪洋,2019.隧道聚能水压控制爆破岩机理与参数优化研究[D].南宁:广西大学.
王雁冰,李书萱,耿延杰,等,2023.切缝药包爆破定向断裂机理及围岩损伤特性分析[J].工程科学学报,45(4):521-532.
吴波,李华隆,蒙国往,等,2022.椭圆双极线性聚能水压爆破数值分析及应用[J].铁道工程学报,39(3):87-93.
熊晓晨,2020.凿岩台车施工硬岩矿山巷道钻爆参数设计[J].中国矿业,29(6):117-120,126.
熊炎林,种玉配,齐燕军,等,2019.聚能爆破在隧道开挖成型控制中的仿真试验研究[J].爆破器材,48(4):54-59.
闫海伦,2020.长大山岭隧道聚能水压光面爆破研究与应用[D].青岛:山东科技大学.
张玉明,员永峰,张奇,2001.切缝药包破岩机理及现场应用[J].爆破器材,30(5):5-8.
[1] 李启月,赵新浩,魏新傲,郑静,张建秋. 大断面隧道轮廓控制爆破技术研究与应用[J]. 黄金科学技术, 2019, 27(3): 350-357.
[2] 胡建华,杨春,周炳任,周科平,张绍国. 巷道压顶光面爆破裂隙扩展模拟及参数优化[J]. 黄金科学技术, 2017, 25(2): 45-53.
[3] 过江,崔文强,陈辉. 不同耦合介质光面爆破裂纹发展数值分析[J]. 黄金科学技术, 2016, 24(1): 68-75.
[4] 李秋涛,魏明浩,刘潭洲,姜亚楠,王志远. 山东金青顶矿区地压控制方法研究[J]. J4, 2011, 19(1): 80-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王文军,肖庆飞,康怀斌,詹信顺,吴启明,肖珲. 某金矿MQG3660格子型球磨机球荷特性优化试验研究[J]. 黄金科学技术, 2016, 24(2): 90 -94 .
[2] 倪帅男,吴彩斌,叶景胜,杨杰,袁程方. 顽石作为磨矿介质在含金铜硫分离中的试验研究[J]. 黄金科学技术, 2018, 26(1): 81 -88 .
[3] 赵威, 李威, 黄树巍, 马朝阳, 修国林. 三山岛金矿智能绿色矿山建设实践[J]. 黄金科学技术, 2018, 26(2): 219 -227 .
[4] 彭剑平,沈述保. 绿色矿山建设长效机制与典型案例[J]. 黄金科学技术, 2016, 24(4): 133 -136 .
[5] 宋英昕,宋明春,丁正江,魏绪峰,徐韶辉,李杰,谭现峰,李世勇,张照录, 焦秀美,胡弘,曹佳. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4 -18 .
[6] 谢覃江. 云南省人头箐金矿床地质特征及成因探讨[J]. 黄金科学技术, 0, (): 0 .
[7] 张壮,李文,刘建明,曾庆栋. 大兴安岭中南段银多金属矿床勘查进展与找矿思路[J]. 黄金科学技术, 2016, 24(4): 60 -65 .
[8] 朱学礼,冯涛,柏瑞,宁霄峰,李肖,张子衿. “地质+”多元驱动智慧勘查初步应用[J]. 黄金科学技术, 2017, 25(1): 46 -54 .
[9] 马明辉,朱明德,陈自辉,房铖 . 三山岛金矿无架腿支护技术研究与应用[J]. 黄金科学技术, 2017, 25(5): 67 -72 .
[10] 何顺斌,刘杰. 基于谱聚类算法的岩体结构面产状优势分组[J]. 黄金科学技术, 2017, 25(4): 46 -51 .