img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (5): 707-720.doi: 10.11872/j.issn.1005-2518.2023.05.090

• 矿产勘查与资源评价 •    下一篇

胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义

单文法1,2,3,4(),毛先成2,3(),刘占坤2,3,邓浩2,3,陈进2,3,张维2,3,5,王海正6,杨鑫6   

  1. 1.中南大学计算地球科学研究中心,湖南 长沙 410083
    2.中南大学地球科学与信息物理学院,湖南 长沙 410083
    3.中南大学有色金属成矿预测与地质环境监测教育部重点实验室,湖南 长沙 410083
    4.湖南大众传媒职业技术学院,湖南 长沙 410100
    5.湖南城市学院市政与测绘工程学院,湖南 益阳 413099
    6.招金矿业股份有限公司,山东 招远 266009
  • 收稿日期:2023-06-15 修回日期:2023-08-22 出版日期:2023-10-31 发布日期:2023-11-21
  • 通讯作者: 毛先成 E-mail:wenfashan@qq.com;mxc@csu.edu.cn
  • 作者简介:单文法(1983-),男,安徽宿州人,博士研究生,从事成矿过程数值模拟研究工作。wenfashan@qq.com
  • 基金资助:
    国家自然科学基金重点项目“矿床时空结构定量表征与智能理解”(42030809);湖南省自然科学基金青年项目“不确定性随机扰动下的三维成矿预测与风险评估”(2022JJ40022)

Numerical Simulation of Metallogenic Processes of Dayingezhuang Gold Deposit in Jiaodong Peninsula and Its Prospecting Significance

Wenfa SHAN1,2,3,4(),Xiancheng MAO2,3(),Zhankun LIU2,3,Hao DENG2,3,Jin CHEN2,3,Wei ZHANG2,3,5,Haizheng WANG6,Xin YANG6   

  1. 1.Computational Geosciences Research Centre, Central South University, Changsha 410083, Hunan, China
    2.School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
    3.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, Hunan, China
    4.Hunan Mass Media Vocational and Technical College, Changsha 410100, Hunan, China
    5.School of Municipal and Geomatics Engineering, Hunan City University, Yiyang 413099, Hunan, China
    6.Zhaojin Mining Industry Co. , Ltd. , Zhaoyuan 266009, Shandong, China
  • Received:2023-06-15 Revised:2023-08-22 Online:2023-10-31 Published:2023-11-21
  • Contact: Xiancheng MAO E-mail:wenfashan@qq.com;mxc@csu.edu.cn

摘要:

大尹格庄金矿床的形成涉及到构造变形、流体活动、热量传递和水岩反应等过程的相互耦合作用。利用FLAC3D数值模拟软件,结合现代矿化率概念,开展了大尹格庄金矿床力—热—流—化耦合的数值模拟,以探讨断裂、体积形变与化学过程耦合对金矿体就位的控制作用。研究结果表明:正体积应变、流体汇聚和金析出量(负矿化率)的高值区均位于控矿招平断裂倾角由陡倾向缓倾转换部位以及断裂局部起伏部位,与金矿体的实际空间分布相吻合,反映出成矿流体更多地汇聚、停留在这些部位,并发生强烈的化学反应,引起金的沉淀析出。这种多物理—化学过程在相同部位的耦合可能是控制大尹格庄金矿床形成的关键因素,基于该成矿规律,推测大尹格庄金矿区深部具有较大的成矿潜力。

关键词: 蚀变岩型金矿, 数值模拟, 成矿流体, 控矿因素, 矿化率, 大尹格庄金矿床

Abstract:

The formation of the Dayingezhuang gold deposit involves the coupled effects of tectonic deformation,pore-fluid transport,heat transfer,and hydrogeochemical reactions.In this paper,FLAC3D nume-rical simulation software and modern mineralization rate concept were used to carry out numerical simulation of force-heat-fluid-chemical coupling of Dayingezhuang gold deposit,so as to explore the controlling effect of fracture structure,bulk deformation,and chemical process coupling on the emplacement of gold orebody.The simulation results demonstrate the following findings: From the perspective of physical process,the steep-slow transition and its local undulation zones along the Zhaoping fault tend to develop larger volume strains with differences of up to 1% compared to the surrounding rocks.This uneven strain distribution leads to the formation of uneven ore-holding spaces and pore pressure variation distribution.Significantly differences between high values of positive and negative pore pressure gradients are observed near the zones with large volume strains,while the differences in other zones are less notable.From the perspective of chemical process,mineralizing fluids tend to converge and stagnate at sites with high volume strain during their migration from the deep to the shallow parts.This convergence of mineralizing fluids leads to a greater precipitation of gold orebodies (mineralization rate less than 0),indicating the occurrence of intense water-rock reactions.In contrast,the areas where the mineralizing fluids don’t converge exhibit a predominance of positive mineralization rate dis-tribution,suggesting the absence of significant gold orebody precipitation.Furthermore,the ROC curve analysis with an AUC value of 0.815 provides quantitative evidence of the strong correlation between the mineralization rate and known gold orebodies,suggesting that this coupling of multiple physical-chemical processes at the same sites may be a key factor governing the formation of Dayingezhuang gold deposit. Based on these observations,it can be inferred that the deep-seated regions of Dayingezhuang deposit hold considerable mineralization potential.

Key words: altered rock type gold deposit, numerical simulation, ore-forming fluid, ore-controlling factor, mineralization rate, Dayingezhuang gold deposit

中图分类号: 

  • P618.51

图1

胶东半岛金矿分布和区域地质图(修改自杨立强等,2019;Deng et al.,2022)1.古近纪沉积物;2.白垩纪沉积物和火山岩;3.新元古代蓬莱群变质岩(1.1~0.8 Ga);4.古元古代荆山/粉子山群变质岩(2.2~1.9 Ga);5.中—新太古代胶东变质杂岩;6.超高压变质岩;7.早白垩世晚期艾山花岗岩类;8.130~125 Ma郭家岭花岗闪长岩;9.160~155 Ma玲珑/昆嵛山花岗岩;10.晚三叠世花岗岩;11.岩石圈断层;12.区域断层;13.蚀变岩型金矿;14.石英脉型金矿;15.其他类型金矿"

图2

胶东大尹格庄金矿床地质简图(修改自Mao et al.,2019)1.第四系沉积物;2.晚侏罗世玲珑花岗岩;3.脉岩;4.中—新太古代胶东变质杂岩;5.黄铁绢英岩化蚀变带;6.金矿体;7.断层;8.勘探线"

图3

大尹格庄金矿床成矿过程数值模拟流程(修改自Zhao et al.,2002,2008;毛先成等,2020)(modified after Zhao et al.,2002,2008;Mao et al.,2020)"

图4

CAu(HS)2-e及其梯度平衡浓度随温度、孔压的变化"

图5

大尹格庄金矿床成矿期数值模拟模型及其构造应力背景"

表1

模拟中的岩石参数"

参数名称玲珑花岗岩断层破碎带胶东杂岩
密度/(kg?m–32 5802 5002 870
体积模量/(×1010 Pa)1.340.501.71
剪切模量/(×109 Pa)2.580.301.80
内聚力/(×107 Pa)5.704.705.30
抗拉强度/(×106 Pa)3.770.405.16
膨胀角/(°)3.204.705.30
摩擦角/(°)28.0014.8033.00
孔隙度/%20.0031.0021.00
渗透率/(×10-121.8010.002.50
热导率/(W?m–1?K–13.602.752.80

图6

大尹格庄金矿床典型勘探线剖面模拟的体积应变及其对应的剖面图[Ⅰ(60)、Ⅱ(76)和Ⅲ(88)]1.钻孔;2.金矿体;3.断裂带;4.绢英蚀变岩;5.绢英岩质破碎带"

图7

大尹格庄金矿床典型勘探线剖面Z轴方向孔压梯度及其对应的剖面图[Ⅰ(60)、Ⅱ(76)和Ⅲ(88)]1.钻孔;2.金矿体;3.断裂带;4.绢英蚀变岩;5.绢英岩质破碎带"

图8

大尹格庄金矿床典型勘探线剖面Z轴方向温度梯度及其对应的剖面图[Ⅰ(60)、Ⅱ(76)和Ⅲ(88)]1.钻孔;2.金矿体;3.断裂带;4.绢英蚀变岩;5.绢英岩质破碎带"

图9

大尹格庄金矿床典型勘探线剖面矿化率及其对应的剖面图[Ⅰ(60)、Ⅱ(76)和Ⅲ(88)]1.钻孔;2.金矿体;3.断裂带;4.绢英蚀变岩;5.绢英岩质破碎带"

图10

大尹格庄金矿床70~90号勘探线剖面(a)及其对应的矿化率图(b)"

图11

大尹格庄金矿床矿化率与已知矿体的ROC曲线"

Chen Y J, Pirajno F, Lai Y,et al,2004.Metallogenic time and tectonic setting of Jiaodong gold province,eastern China[J].Acta Petrologica Sinica,20(4):907-922.
Dai Xueling,2012.Study on Petrogenesic-Metallogenic Mechanism in Dayingezhuang Gold Deposit,Zhaoyuan Country,Shandong Province[D].Changsha:Central South University.
Deng Hao, Wei Yunfeng, Chen Jin,et al,2021.Three-dimensional prospectivity mapping and quantitative analysis of structuralore-controlling factors in Jiaojia Au ore-belt with attention convolutional neural networks[J].Journal of Central South University(Science and Technology),52(9):3003-3014.
Deng Hao, Zheng Yang, Chen Jin,et al,2020.Deep learning-based 3D prediction model for the Dayingezhuang gold deposit,Shandong Province[J].Acta Geoscientica Sinica,41(2):157-165.
Deng J, Wang Q F, Liu X F,et al,2022.The formation of the Jiaodong gold province[J].Acta Geologica Sinica(English Edition),96(6):1801-1820.
Dick J M,2019.Chnosz: Thermodynamic calculations and diagrams for geochemistry[J].Frontiers in Earth Science,7:180.
Eldursi K, Chi G, Bethune K,et al,2020.New insights from 2- and 3-D numerical modelling on fluid flow mechanisms and geological factors responsible for the formation of the world-class Cigar Lake uranium deposit,Eastern Athabasca Basin,Canada[J].Mineralium Deposita,56(7):1365-1388.
Fan H R, Zhai M G, Xie Y H,et al,2003.Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China[J].Mineralium Deposita,38(6):739-750.
Fournier R O,1999.Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment[J].Economic Geology,98:1193-1211.
Itasca Consulting Group,2012.FLAC3D user’s guide[Z].version 5.0. Minneapolis:Itasca Consulting Group.
Li Hongkui, Geng Ke, Zhuo Chuanyuan,et al,2016.Tectonic Setting and Mineralization of the Jiaodong Gold Deposit[M]. Beijing:Geological Publishing House.
Li Z, Chi G, Bethune K M,et al,2017.Structural controls on fluid flow during compressional reactivation of basement faults:Insights from numerical modeling for the formation of unconformity-related uranium deposits in the Athabasca Basin,Canada[J].Economic Geology,112(2):451-466.
Li Z, Chi G, Bethune K M,et al,2018.Numerical simulation of strain localization and its relationship to formation of the Sue unconformity-related uranium deposits,eastern Athabasca Basin,Canada[J].Ore Geology Reviews,101:17-31.
Lin Y, Gao F, Zhou K P,et al,2019.Mechanical properties and sta-tistical damage constitutive model of rock under a coupled chemical-mechanical condition[J].Geofluids,(6):1-17.
Liu L, Cao W, Liu H,et al,2022.Applying benefits and avoiding pitfalls of 3D computational modeling-based machine learning prediction for exploration targeting: Lessons from two mines in the Tongling-Anqing district,eastern China[J].Ore Geology Reviews,142:104712.
Liu Z K, Mao X C, Jedemann A,et al,2021a.Evolution of pyrite compositions at the Sizhuang gold deposit,Jiaodong Peninsula,Eastern China:Implications for the genesis of Jiao-dong-type orogenic gold mineralization[J].Minerals,11(4):344.
Liu Z K, Hollings P, Mao X C,et al,2021b.Metal remobilization from country rocks into the Jiaodong-type orogenic gold systems,Eastern China:New constraints from scheelite and galena isotope results at the Xiadian and Majiayao gold deposits[J].Ore Geology Reviews,134:104126.
Liu X, Xiao C, Zhang S,et al,2021.Numerical modeling of deformation at the Baiyun gold deposit,northeastern China:Insights into the structural controls on mineralization[J].Journal of Earth Science,32(1):174-184.
Chengxun Lü, Zhang Da, Xu Yaqing,et al,2022.Calculation of metallogenic depth in the Jiaodong gold deposits:Tectoniccorrection method and metallogenic prediction[J].Earth Science Frontiers,29(1):427-438.
Mao X C, Ren J, Liu Z K,et al,2019.Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit,Jiao-dong Peninsula,Eastern China:A case study of the Dayingezhuang deposit[J].Journal of Geochemical Exploration,203:27-44.
Mao Xiancheng, Wang Mijun, Liu Zhankun,et al,2019.Quantitative analysis of ore-controlling factors based on exploration data of the Dayingezhuang gold deposit in the Jiaodong Peninsula[J].Earth Science Frontiers,26(4):84-93.
Mao Xiancheng, Wang Qi, Chen Jin,et al,2020.Three-dimensional modeling of deep metallogenic structure in northwestern Jiaodong Peninsula and its gold prospecting significance[J].Acta Geoscientica Sinica,41(2):166-178.
Oliver N H S, McLellan J G, Hobbs B E,et al,2006.Numerical models of extensional deformation,heat transfer,and fluid flows across basement-cover interfaces during basin-related mineralization[J]. Economic Geology,101:1-31.
Poh J, Yamato P, Duretz T,et al,2020.Precambrian deformation belts in compressive tectonic regimes:A numerical perspective[J].Tectonophysics,777:228350.
Schön J H,1998.Physical Properties of Rocks:Fundamentals and Principles of Petrophysics[M].Oxford:Pergamon-Elsevier.
Song M C, Deng J, Yi P H,et al,2014.The kiloton class Jiaojia gold deposit in eastern Shandong Province and its genesis[J].Acta Geologica Sinica(English Edition),88:801-824.
Song M C, Li J, Yu X F,et al,2021a.Metallogenic characteristics and tectonic setting of the Jiaodong gold deposit,China[J].Solid Earth Sciences,6(4):385-405.
Song M C, Li S Z, Santosh M,et al,2015.Types,characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula,Eastern North China Craton[J].Ore Geology Revie-ws,65:612-625.
Song M C, Xue G Q, Liu H B,et al,2021b.A geological-geophy-sical prospecting model for deep-seated gold deposits in the Jiaodong Peninsula,China[J].Minerals,11(12):1393.
Song M C, Yi P H, Xu J X,et al,2012.A step metallogenetic model for gold deposits in the northwestern Shandong Peninsula,China[J].Science China (Earth Sciences),55:940-948.
Song Mingchun, Lin Shaoyi, Yang Liqiang,et al,2020.Metallogenic model of Jiaodong Peninsula gold deposits[J]. Mineral Deposits,39(2):215-236.
Wang Z, Xu Z, Cheng H,et al,2021.Precambrian metamorphic crustal basement cannot provide much gold to form giant gold deposits in the Jiaodong Peninsula,China[J].Precambrian Research,354:106045.
Wen B J, Fan H R, Hu F F,et al,2016.Fluid evolution and ore genesis of the giant Sanshandao gold deposit,Jiaodong gold province,China:Constrains from geology,fluid inclusions and H-O-S-He-Ar isotopic compositions[J]. Journal of Geochemical Exploration,171:96-112.
Williams-Jones A E, Bowell R J, Migdisov A A,2009.Gold in solution[J]. Elements,5(5):281-287.
Yang Bin, Zhou Xin, Duan Lei,et al,2020.Tectonic evolution and ore control effect in Dayingezhuang gold district,Jiaodong Peninsula[J]. Gold,41(9):35-40.
Yang L Q, Deng J, Guo L N,et al,2016.Origin and evolution of ore fluid,and gold deposition processes at the giant Taishang gold deposit,Jiaodong Peninsula,eastern China[J].Ore Geology Reviews,72:585-602.
Yang L Q, Deng J, Wang Q F,et al,2007.Numerical modeling of coupling metallogenic dynamics of fluid flow and thermal transportation in Jiaodong gold ore cluster area,China[C]//Proceedings of IAMG’07: Geomathematics and GIS Analysis of Resources, Environment and Hazards.12th Conference of the International. Association for Mathematical Geology, Beijing, China, August 26-31:39-43.
Yang L Q, Deng J, Wang Z L,et al,2014.Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China[J].Acta Petrologica Sinica,30:2447-2467.
Yang Liqiang, Deng Jun, Song Mingchun,et al,2019.Structure control on formation and localization of giant deposits:An example of Jiaodong gold deposits in China[J].Geotectonica et Metallogenia,43(3):431-446.
Yuan Z Z, Li Z K, Zhao X F,et al,2019.New constraints on the genesis of the giant Dayingezhuang gold (silver) deposit in the Jiaodong district,North China Craton[J]. Ore Geology Reviews,112:103038.
Zhang L, Weinberg R F, Yang L Q,et al,2020.Mesozoic orogenic gold mineralization in the Jiaodong Peninsula,China:A focused event at 120±2 Ma during cooling of pregold granite intrusions[J].Economic Geology,115(2):415-441.
Zhang Ruizhong, Gao Bangfei, Guo Chunying,et al,2008. Ore-body locating and mineral prospecting in Dayingezhuang gold deposit,Shandong Province[J].Gold,29(4):9-13.
Zhao C, Hobbs B E, Ord A,2008.Convective and Advective Heat Transfer in Geological Systems[M]//Advances in Geophysical and Environmental Mechanics and Mathematics. Berlin:Springer.
Zhao C, Hobbs B E, Ord A,2020.Transient-state instability analysis of dissolution-timescale reactive infiltration in fluid-saturated porous rocks:Purely mathematical approach[J].Science China Technological Sciences,63:319-328.
Zhao C, Hobbs B E, Ord A,2021.An accurate porosity-velocity-concentration approach for solving reactive mass transport problems involving chemical dissolution in fluid-saturated porous media with arbitrarily initial porosity distributions[J].International Journal for Numerical Methods in Engineering,122:7354-7377.
Zhao C, Hobbs B E, Ord A,2022a.Semi-analytical finite element method for simulating chemical dissolution-front instability problems in fluid-saturated porous media[J]. Engineering Computations,39:1781-1801.
Zhao C, Hobbs B E, Ord A,2022b.Two different mathematical schemes for solving chemical dissolution-front instability problems in fluid-saturated rocks[J]. Science China Technological Sciences,65:147-156.
Zhao C, Lin G, Hobbs B E,et al,2002.Finite element modelling of reactive fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins[J].Engineering Computations,19:364-387.
戴雪灵,2012.山东招远大尹格庄金矿成岩—成矿机理研究[D].长沙:中南大学.
邓浩,魏运凤,陈进,等,2021.基于注意力卷积神经网络的焦家金矿带三维成矿预测及构造控矿因素定量分析[J].中南大学学报(自然科学版),52(9):3003-3014.
邓浩,郑扬,陈进,等,2020.基于深度学习的山东大尹格庄金矿床深部三维预测模型[J].地球学报,41(2):157-165.
李洪奎,耿科,禚传源,等,2016.胶东金矿构造环境与成矿作用[M].北京:地质出版社.
吕承训,张达,许亚青,等,2022.胶东金矿成矿深度的构造校正测算及成矿预测[J].地学前缘,29(1):427-438.
毛先成,王迷军,刘占坤,等,2019.基于勘查数据的胶东大尹格庄金矿床控矿地质因素定量分析[J].地学前缘,26(4):84-93.
毛先成,王琪,陈进,等,2020.胶西北金矿集区深部成矿构造三维建模与找矿意义[J].地球学报,41(2):166-178.
宋明春,林少一,杨立强,等,2020.胶东金矿成矿模式[J].矿床地质,39(2):215-236.
杨斌,周鑫,段磊,等,2020.胶东大尹格庄金矿区构造演化与控矿作用[J].黄金,41(9):35-40.
杨立强,邓军,宋明春,等,2019.巨型矿床形成与定位的构造控制:胶东金矿集区剖析[J].大地构造与成矿学,43(3):431-446.
张瑞忠,高帮飞,郭春影,等,2008.胶东大尹格庄金矿床矿体定位与成矿预测[J].黄金,29(4):9-13.
[1] 张玉,王文己,孙加奇,肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[2] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[3] 王大福,刘建中,王泽鹏,陈发恩,杨成富,徐良易,李俊海,刘婧珂,潘启权,龙成雄,汪小勇. 贵州贞丰县卡务地区金矿地质特征与找矿预测[J]. 黄金科学技术, 2023, 31(3): 433-442.
[4] 刘林林,陈军,杨再风,杜丽娟,吉彦冰,郑禄林. 滇黔桂地区不同成矿温度热液金矿床磷灰石矿物化学特征:兼论卡林型金成矿流体来源特殊性[J]. 黄金科学技术, 2023, 31(2): 219-231.
[5] 陈耀宇,姚兴华,田向盛,冯兰君. 甘南地区加甘滩金矿床主矿体特征及其与区域典型矿床对比分析[J]. 黄金科学技术, 2023, 31(1): 50-63.
[6] 蔡焕花,冯绍平,郭淳,王小涛,杨光忠,黄岚,张争辉. 豫西铁岭金铅矿床地质特征及找矿潜力分析[J]. 黄金科学技术, 2022, 30(6): 866-876.
[7] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[8] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[9] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[10] 马德锡,任喜荣,宋炯,张保卫. 高密度电法在北巴颜喀拉山夺尔贡玛锑金矿点找矿中的应用[J]. 黄金科学技术, 2022, 30(4): 498-507.
[11] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[12] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[13] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[14] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[15] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!