img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (1): 160-169.doi: 10.11872/j.issn.1005-2518.2024.01.122

• 采选技术与矿山管理 • 上一篇    下一篇

基于满管输送的充填管路优化研究

徐泽峰(),史秀志,黄仁东,丁文智,陈新()   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2023-08-24 修回日期:2023-11-20 出版日期:2024-02-29 发布日期:2024-03-22
  • 通讯作者: 陈新 E-mail:19307489912@163.com;chenxin_ck@csu.edu.cn
  • 作者简介:徐泽峰(1998-),男,河南焦作人,硕士研究生,从事采矿技术研究工作。19307489912@163.com
  • 基金资助:
    国家自然科学基金项目“稻草秸秆灰活化及其尾砂充填水化胶结机理”(52204165);湖南省自然科学基金项目“超细铅锌尾砂环境下微生物矿化沉积机制研究”(2021JJ40733)

Study on Filling Pipeline Optimization Based on Full Pipe Transportation

Zefeng XU(),Xiuzhi SHI,Rendong HUANG,Wenzhi DING,Xin CHEN()   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2023-08-24 Revised:2023-11-20 Online:2024-02-29 Published:2024-03-22
  • Contact: Xin CHEN E-mail:19307489912@163.com;chenxin_ck@csu.edu.cn

摘要:

满管输送可以延长充填管路的使用寿命,提高矿山充填作业效率。基于凡口铅锌矿新探明边缘矿体开采的充填需求,针对现有充填管线直径100 mm无法实现满管输送的问题,以地表管线SL1和地下管线L2-2为研究对象,开展充填管路优化研究。首先,运用理论计算,得出输送分级尾砂和细尾砂时,SL1的满管率分别为0.62和1.95,L2-2的满管率分别为0.72和2.26;其次,以最优满管率0.8为标准,通过公式推导,得出输送分级尾砂和细尾砂时SL1的理想水平管径分别为87 mm和155 mm,L2-2的理想水平管径分别为94 mm和168 mm;最后,利用CFD构建管道模型,运用Fluent软件进行变径满管流的数值模拟,通过对管道的压力及出口最大流速等进行对比分析得出,输送分级尾砂时减小管径可以增大满管率,且仍可自流输送;输送细尾砂时增大管径可以降低泵送压力。模拟结果证明此优化方案合理且具有很强的可行性。

关键词: 矿山充填, 满管输送, 管线优化, 数值模拟, 管道变径, Fluent软件

Abstract:

Mine filling technology is an important technical means for the construction of green mines,and full pipe transportation is a very important technology in the filling operation of underground metal mines.Full pipe transportation can minimize the contact area between filling slurry and air,reduce the impact on the filling pipeline,extend the service life of the filling pipeline,and improve the efficiency of mining filling operations.Aiming at the problem of the long distance between the newly discovered edge ore body and the filling station in Fankou lead-zinc mine and the high difficulty of transportation,the surface pipeline SL1 and underground pipeline L2-2 in the mine design plan were selected as the research objects to study the optimization plan of the filling pipeline in Fankou lead-zinc mine.Firstly,using theoretical formulas and based on the filling data of Fankou lead-zinc mine,the filling line and full pipe rate of SL1 pipeline and L2-2 pipeline were calculated when transporting graded tailings and fine tailings,respectively.The comparison was made using the optimal full pipe rate of 0.8 as the standard.The results show that both pipelines are in a state of under pipe when transporting graded tailings,and are in a state of over pipe when transporting fine tailings,which do not meet the optimal full pipe rate and need optimization.Secondly,through formula derivation and calculation,the ideal horizontal pipe diameter and the hydraulic slope after diameter change when transporting different slurry were obtained.Finally,numerical simulation was used to verify the calculation results of pipe diameter optimization.A pipeline model was constructed using CFD.The vertical pipeline was taken as 5 m,the horizontal pipeline was 23 m,the total length of the pipeline was 28 m,and the curvature radius at the bend of the pipeline was 0.55 m.The horizontal pipe diameter was changed.Fluent software was used to simulate the full pipe transportation before and after the diameter change,and key data such as flow velocity and full process resistance were obtained when transporting graded tailings and fine tailings.By comparing and analyzing the pressure of the pipeline and the maximum outlet flow rate,it is concluded that SL1 and L2-2 can transport graded tailings by gravity after optimizing the pipe diameter,while fine tailings can’t be transported by gravity.However,the pumping pressure is significantly reduced,so the calculation results are reasonable.Therefore,this optimization plan is relatively reasonable and has strong guiding significance for mining filling operations.

Key words: mine filling, full pipe transportation, pipeline optimization, numerical simulation, pipe diameter change, Fluent software

中图分类号: 

  • TD853

图1

充填管道磨损对比示意图"

图2

管道流速与压力损失关系曲线"

表1

充填料浆配比及其性质"

充填料浆有效粒径/μm灰砂比料浆质量浓度/%屈服剪切应力τ0/Pa黏性系数η/(Pa·S)料浆容重/(t·m-3)料浆塌落度ΔHs/cm
分级尾砂2501∶57616.180.101.9729.1
细尾砂71∶36629.090.241.6927.8

表2

充填管路充填倍线计算"

充填线路

管线

编号

地表高差/m总输送距离/m

充填

倍线

新充填站至7#新钻孔SL112845.60
0#钻孔线路L2-236823276.32

表3

充填管路理想变径及水力坡度"

充填管路充填料浆原水力坡度i1(mH2O/m)变径水力坡度i2(mH2O/m)理想管径/mm变径后流速/(m·s-1
SL1分级尾砂0.200.2587.004.68
细尾砂0.430.21155.001.47
L2-2分级尾砂0.200.2294.004.00
细尾砂0.430.19168.001.25

图3

SL1充填管道弯管流速分布云图(a)分级尾砂,水平管径为100 mm;(b)分级尾砂,水平管径为87 mm;(c)细尾砂,水平管径为100 mm;(d)细尾砂,水平管径为155 mm"

图4

SL1充填管道全压分布云图(a)分级尾砂,水平管径为100 mm;(b)分级尾砂,水平管径为87 mm;(c)细尾砂,水平管径为100 mm;(d)细尾砂,水平管径为155 mm"

表4

管线SL1变径输送模拟结果"

充填管路管径/mm充填料浆全程阻力/MPa自然压头/MPa出口最大流速/(m·s-1出口平均流速/(m·s-1
SL1100分级尾砂0.0140.0963.7963.234

垂直管径100

水平管径87

分级尾砂0.0190.0964.3593.717
100细尾砂0.1040.0833.8123.236

垂直管径100

水平管径155

细尾砂0.0970.0832.4132.086

图5

L2-2充填管道弯管流速分布云图(a)分级尾砂,水平管径为100 mm;(b)分级尾砂,水平管径为94 mm;(c)细尾砂,水平管径为100 mm;(d)细尾砂,水平管径为168 mm"

图6

L2-2充填管道全压分布云图(a)分级尾砂,水平管径为100 mm;(b)分级尾砂,水平管径为94 mm;(c)细尾砂,水平管径为100 mm;(d)细尾砂,水平管径为168 mm"

表5

管线L2-2变径输送模拟结果"

充填管路管径/mm充填料浆全程阻力/MPa自然压头/MPa出口最大流速/(m·s-1出口平均流速/(m·s-1
L2-2100分级尾砂0.0160.0963.7933.233
垂直管100;水平管94分级尾砂0.0180.0964.0313.440
100细尾砂0.1060.0833.8243.236
垂直管100;水平管168细尾砂0.0970.0832.2291.925
Cheng Haiyong, Wu Aixiang, Wu Shunchuan,et al,2022.Research status and development trend of solid waste backfill in metal mines[J].Chinese Journal of Engineering,44(1):11-25.
Dai Xingguo, Li Yan, Zhang Bixiao,2016.Numerical investigation of depressurization full-pipe transportation of paste in deep mine[J].Gold Science and Technology,24(3):70-75.
Ding Deqiang,2007.Study on Theory and Technology of Paste Filling in Underground Goaf of Mine[D].Changsha:Central South University.
Guo Mochuan, Tan Yuye, Chu Lishen,et al,2022.Analysis of gravity flow pipeline transportation and pipeline wear for an iron mine[J].Mining and Metallurgical Engineering,42(5):39-43.
Jiang Hongbo, Li Shijun, Yao Rui,et al,2018.Technical countermeasures for pipe bursting problem of filling system in deep mine[J].China Mine Engineering,47(1):7-9.
Kennedy B, Farquhar A, Hilderman R,et al,2020.Pressure controlled permeability in a conduit filled with fractured hydrothermal breccia reconstructed from Ballistics from Whakaari (White Island),New Zealand[J].Geosciences,10(4):138.
Li Xiangyang, Zhang Xinguo, Cao Zhong,et al,2011.Study on application of washing technology for filling pipelines with full pipe and self-flow pastes[J].Journal of Shandong University of Science and Technology(Natural Science),30(5):22-25.
Li Zongnan, Luo Wandong, Guo Lijie,et al,2020.Optimization and application for slurry transportation in large fill-timesline based on Buckingham equation[J].Gold Science and Technology,28(1):90-96.
Lin Tianye,2017.Research on the Flow Properties of the Gangue Paste-Like Slurry[D].Beijing:China University of Mining and Technology(Beijing).
Liu Xiaohui, Wu Aixiang, Wang Hongjiang,et al,2013.Fullflow transport theory and its application in deep mine backfill-ing[J].Chinese Journal of Engineering,35(9):1113-1118.
Martins M N C, Delgado J N, Ramos H M,et al,2017.Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model[J].Journal of Hydraulic Research,55(4):506-519.
Sun H K, Gan D Q, Xue Z L,et al,2022.Categorization of factors affecting the resistance and parameters optimization of ultra-fine cemented paste backfill pipeline transport[J].Buildings,12(10):1697.
Wang Xinmin, He Yan, Chen Qiusong,2014.Full pipeline flowing transportation technology of classified tailings based on the Fluent software[J].Science and Technology Review,32(1): 53-58.
Wang Yushan, Zheng Bokun, Chen Huaijiao,et al,2019.Study on pressure distribution of self-balanced backfill slurry gravity pipeline in No.2 mining area of Jinchuan[J].Mining Technology,19(3): 21-25.
Wu Di, Cai Sijing, Yang Wei,et al,2012.Simulation and experiment of backfilling pipeline transportation of solid-liquid two-phase flow based on CFD[J].The Chinese Journal of Nonferrous Metals,22(7):2133-2140.
Xia Zhiyuan, Cheng Haiyong, Wu Shunchuan,et al,2024.Migration and transformation of water in paste and numerical deduction of its rheological behavior under pulse pumping environment[J].Chinese Journal of Engineering,46(1):11-22.
Yang Wenwen, Guo Tao, Du Tao,et al,2021.Research and application of fluid technology of EPB shield muck environmental protection treatment[J].Tunnel Construction,41(Supp.2):605-611.
Yin Shenghua, Yan Zepeng, Yan Rongfu,et al,2023.Rheological properties and resistance evolution of cemented unclassified tailings-waste rock paste[J].Chinese Journal of Engineering,45(1):9-18.
Zhang Deming, Wang Xinmin, Zheng Jingjing,et al,2010.Wear mechanism and cause of backfilling drill-holes pipelines in deep mine[J].Journal of Wuhan University of Technology,32(13): 100-105.
Zhang Q L, Cui J Q, Zheng J J,2011a.Wear mechanism andserious wear position of casing pipe in vertical backfill drill-hole[J].Transactions of Nonferrous Metals Society of China,21(11):2503-2507.
Zhang H M, Li M, Yang L L,2011b.Optimization of packing pressure curve in injection molding based on numerical simulation[J].Advanced Materials Research,221:522-527.
Zhu Chuanming, Ding Wenzhi, Chen Xin,2022.Study on backfilling and conveying of edge ore body in Fankou mine[J].Nonferrous Metals Engineering,12(11):128-135.
程海勇,吴爱祥,吴顺川,等,2022.金属矿山固废充填研究现状与发展趋势[J].工程科学学报,44(1):11-25.
戴兴国,李岩,张碧肖,2016.深井膏体降压满管输送数值模拟研究[J].黄金科学技术,24(3):70-75.
丁德强,2007.矿山地下采空区膏体充填理论与技术研究[D].长沙:中南大学.
郭沫川,谭玉叶,楚立申,等,2022.某铁矿管道自流输送分析及管道磨损研究[J].矿冶工程,42(5):39-43.
姜洪波,李世珺,姚锐,等,2018.深井矿山充填系统管路爆管问题的应对措施[J].中国矿山工程,47(1):7-9.
李向阳,张新国,曹忠,等,2011.满管自流膏体充填管路清洗技术研究及应用[J].山东科技大学学报(自然科学版),30(5):22-25.
李宗楠,罗皖东,郭利杰,等,2020.基于Buckingham方程的大倍线充填料浆输送优化与应用[J].黄金科学技术,28(1):90-96.
林天埜,2017.矸石似膏体充填料浆流动性能研究[D].北京:中国矿业大学(北京).
刘晓辉,吴爱祥,王洪江,等,2013.深井矿山充填满管输送理论及应用[J].北京科技大学学报,35(9): 1113-1118.
王新民,贺严,陈秋松,2014.基于Fluent的分级尾砂料浆满管流输送技术[J].科技导报,32(1): 53-58.
王玉山,郑伯坤,陈怀教,等,2019.金川二矿区自平衡充填料浆自流输送管道压力分布研究[J].采矿技术,19(3): 21-25.
吴迪,蔡嗣经,杨威,等,2012.基于CFD的充填管道固液两相流输送模拟及试验[J].中国有色金属学报,22(7):2133-2140.
夏志远,程海勇,吴顺川,等,2024.脉冲泵压环境膏体水分迁移转化与流变行为数值推演[J].工程科学学报,46(1):11-22.
杨雯雯,郭涛,杜涛,等,2021.盾构渣土环保处理系统流体技术研究及应用[J].隧道建设,41(增2):605-611.
尹升华,闫泽鹏,严荣富,等,2023.全尾砂—废石膏体流变特性及阻力演化[J].工程科学学报,45(1):9-18.
张德明,王新民,郑晶晶,等,2010.深井充填钻孔内管道磨损机理及成因分析[J].武汉理工大学学报,32(13): 100-105.
朱传明,丁文智,陈新,2022.凡口矿边缘矿体充填输送研究[J].有色金属工程,12(11):128-135.
[1] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[2] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[3] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[4] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[5] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[6] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[7] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[8] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[9] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[10] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[11] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[12] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[13] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[14] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[15] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!