img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (5): 753-763.doi: 10.11872/j.issn.1005-2518.2022.05.021

• 采选技术与矿山管理 • 上一篇    下一篇

基于FLUENT的深井掘进巷道局部通风参数优化

郭对明1,2(),李国清1,2(),侯杰1,2,胡乃联1,2   

  1. 1.北京科技大学土木与资源工程学院,北京 100083
    2.金属矿山高效开采与安全教育部重点实验室,北京 100083
  • 收稿日期:2022-01-19 修回日期:2022-05-06 出版日期:2022-10-31 发布日期:2022-12-10
  • 通讯作者: 李国清 E-mail:guoduiming@163.com;qqlee@ustb.edu.cn
  • 作者简介:郭对明(1992-),男,河北保定人,博士研究生,从事矿山安全与通风研究工作。guoduiming@163.com
  • 基金资助:
    国家自然科学基金项目“面向大数据的金属地下矿山安全隐患辨识与事故演化机理”(52074022);国家重点研发计划项目“地下金属矿规模化无人采矿关键技术研发与示范”(2018YFC0604405)

Optimization of Local Ventilation Parameters of Deep Mine Excavation Roadway Based on FLUENT

Duiming GUO1,2(),Guoqing LI1,2(),Jie HOU1,2,Nailian HU1,2   

  1. 1.School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2.Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education of the People’s Republic of China, Beijing 100083, China
  • Received:2022-01-19 Revised:2022-05-06 Online:2022-10-31 Published:2022-12-10
  • Contact: Guoqing LI E-mail:guoduiming@163.com;qqlee@ustb.edu.cn

摘要:

深井开采通风线路长,导致局部通风量不足、热空气无法及时排出和作业面附近热量聚集等问题出现。随着矿山开采深度的增加,高温热害成为深井开采面临的难题之一,在地温梯度和井下各类热源的作用下,深井环境更加恶劣。为了改善深井掘进巷道高温环境,提高深井局部通风散热效果,以国内某大型地下金属矿山深部掘进巷道为背景,对深井局部通风参数进行优化研究。利用FLUENT软件构建掘进巷道三维模型并对巷道温度场进行数值模拟,通过对比不同风量和风温条件下的巷道温度变化情况,优选出适用于深井掘进巷道的最佳局部通风参数,并通过现场试验对模拟结果进行了验证。研究结果表明:数值模拟与试验验证相结合的方法科学有效,改善了单纯依靠试验的传统方法存在的高成本和重复性低的缺点;数值模拟方法可以直观展示巷道风温分布特征,局部通风参数优化后能够有效改善深部掘进巷道高温环境,对深井开采局部通风降温具有一定的指导意义。

关键词: 深部开采, 掘进巷道, 局部通风, 参数优化, 数值模拟, 高温热害

Abstract:

With the depletion of shallow resources,deep mining has become the development trend of mines.Compared with shallow mining,one of the difficulties of deep mining is high temperature and heat damage.The ventilation lines of deep mining are long and complex,resulting in poor ventilation of deep working face,and the heat can’t be discharged in time.It is complex and difficult to improve the thermal environment of working face with the help of ventilation global optimization,while local ventilation optimization is economical,fast and efficient,so it has become the first choice to improve the thermal environment of working face.The selection of ventilation parameters in traditional local ventilation optimization usually depends on on-site test,which leads to high cost and poor repeatability,and can’t meet the requirements of parameter optimization.With the develop-ment of computer,numerical simulation is applied to the field of ventilation,which provides a new means for the research of local ventilation optimization.Taking a large underground metal mine in China as the research object,the wind temperature of excavation roadway at -945 m level in the mine was measured.Based on the roadway section size,the roadway model was constructed by FLUENT software,and the initialization setting of the simulation was completed in combination with the roadway boundary conditions.By changing the local ventilation parameters,the cooling effects under different ventilation parameters were obtained by numerical simulation of different inlet air temperature,inlet air volume,duct erection height and outlet position.The ventilation schemes under the above different parameters were applied in -945 m horizontal excavation roa-dway.The reliability of the numerical simulation results was verified by comparing the simulated temperature with the measured temperature under different schemes.While selecting the local ventilation parameters with the best cooling effect,taking into account the economy of local ventilation and the safety of underground operation.Finally,the optimal local ventilation parameters with good cooling effect,economy,safety and suitable for deep shaft excavation roadway were obtained.The conclusions are as follows:The comparison between the simulation results and the measured data shows that the two results are in good agreement,which proves that the numerical simulation is reliable and can be extended to other deep level local ventilation and cooling research.The research method of combining numerical simulation and experimental verification is scientific and effective,and improves the shortcomings of high cost and low repeatability of traditional relying solely on experiments.Numerical simulation intuitively shows the distribution characteristics of tunnel air temperature.The optimized local ventilation parameters can effectively improve the high-temperature environment of deep excavation roadway,and have certain guiding significance for local ventilation and cooling in deep mine mining.

Key words: deep mining, excavation roadway, local ventilation, parameter optimization, numerical simulation, high temperature and heat damage

中图分类号: 

  • TD72

图1

巷道断面(a)及温度测点布置(b)示意图"

表1

无局部通风情况下巷道风温分布"

截面编号风温/℃
测点a测点b测点c测点d测点e
6030.630.730.730.530.6
5030.530.630.830.330.4
4030.330.530.530.330.2
3030.130.330.330.230.1
2030.030.130.229.930.0
1029.830.030.029.729.7
029.829.829.929.529.5

图2

掘进巷道物理模型"

图3

掘进巷道横截面与侧面网格划分"

表2

初始条件和相关参数"

序号参数具体数值或描述
1风流入口风筒出口
2风流出口巷道入口
3巷道壁面传热系数/(W·m-2·K-115
4速度类型绝对速度
5求解器稳态求解器
6湍流模型realizable k-ε模型
7出口类型自由出口
8巷道壁面无滑移
9入口风速/(m·s-120
10入风温度/℃24
11围岩温度/℃34.5

图4

巷道温度分布(a)与各截面温度分布(b)"

图5

压入式通风条件下风流分布(a)与温度变化曲线(b)"

图6

不同入风温度条件下各截面平均温度变化"

图7

不同通风风量条件下各截面平均温度变化(a)及X=30 m断面温差(b)"

图8

不同风筒架设高度条件下各截面平均温度变化"

图9

出风口距作业面不同距离条件下各截面平均温度变化"

图10

出风口距作业面不同距离条件下巷道风流流线图"

图11

实测温度与模拟温度对比图(测点d和e)"

表3

各测点实测温度与模拟温度对比"

截面 位置/m测点a测点b测点c测点d测点e
实测值模拟值实测值模拟值实测值模拟值实测值模拟值实测值模拟值
026.20026.33626.10026.26626.40026.49626.50026.63626.70026.886
1025.90026.21625.80026.07626.00026.37626.10026.31626.30026.266
2026.10026.25226.10026.39226.20026.41226.20026.40226.20026.372
3026.30026.27626.10026.41626.30026.43626.20026.52626.50026.586
4026.10026.31226.20026.45226.40026.42226.40026.66226.60026.712
5026.20026.32826.50026.46826.20026.43826.40026.77826.70026.718
6026.30026.34026.30026.48026.40026.45026.70026.84027.00026.810

表4

局部通风参数优化结果"

参数优化结果解决的问题
风温/℃26确定考虑降温经济性的最佳入风温度
风量/(m3·s-13.39确定节约能源前提下的最佳风量
风筒高度/m1.8确定安全性和降温效果的最佳风筒高度
出风口位置/m9确定排污效果和降温效果最佳的出风口位置
Brodny J, Tutak M,2017.Analysis of influence of the air conditioning on the air parameters in underground mine workings[C]//17th International Multidisciplinary Scientific GeoConference & EXPO(SGEM 2017). Albena,Bulgaria:SGEM.
Candra K J, Pulung S A, Sadashiv M A,2014.Dust dispersion and management in underground mining faces[J].International Journal of Mining Science and Technology,(1):39-44.
Cao Yaping,2021.Numerical simulation study on influencing factors of ventilation and cooling in mine horizontal roadway[J].Inner Mongolia Coal Economy,(2):72-73.
Cui Yiyuan, Li Kun, Mei Guodong,et al,2021.Research progress of analysis and control technology of heat stress in deep mine[J].Nonferrous Metals(Mining Section),73(2):128-134.
Du Cuifeng, Xu Zhe, Tang Zhanxin,et al,2016.Numerical simulation of ventilation and cooling in excavation roadway and analysis of influencing factors[J].Metal Mine,45(2):151-155.
Gu Desheng, Zhou Keping,2012.Development theme of modern metal mining[J].Metal Mine,41(7):1-8.
Hargreaves D M, Lowndes I S,2007.The computational modeling of the ventilation flows within a rapid development drivage[J].Tunnelling and Underground Space Technology,(2):150-160.
Kurnia J C, Sasmito A P, Hassani F P,et al,2015.Introduction and evaluation of a novel hybrid brattice for improved dust control in underground mining faces:A computational study[J].International Journal of Mining Science and Technology,(4):537-543.
Li Meng, Wei Wei, Peng Bin,et al,2020.Analysis of common existing of high temperature mine operation area and discussion on cooling technology[J].Hunan Nonferrous Metals,36(4):1-4,27.
Li Yanbo, Huang Shouyuan, Li Gang,et al,2011.Study on numerical simulation of thermal environment on heading face with extraction local ventilation[J].China Energy and Environmental Protection,(9):12-14,42.
Li Yong, Chu Zhaoxiang, Ji Jianhu,et al,2014.Numerical simulation of airflow and temperature field in excavation roadway[J].Coal Science and Technology,(Supp.1):142-145,148.
Long Tengteng, Zhou Keping, Chen Qingfa,et al,2008.A simulated study on the ventilation effect of the heading face based on PMV index[J].Journal of Safety and Environment,(3):122-125.
Lowndes I S, Crossley A J, Yang Z Y,2004.The ventilation and climate modelling of rapid development tunnel drivages[J].Tunnelling and Underground Space Technology,(2):139-150.
Mo Supeng, Chen Lei,2020.Investigation on the distribution law of high temperature heat damage in a mine in Guangxi[J].Modern Mining,36(7):226-228.
Sasmito A P, Birgersson E, Ly H C,et al,2013.Some approaches to improve ventilation system in underground coal mines en-vironment—A computational fluid dynamic study[J].Tunnelling and Underground Space Technology,(34):82-95.
Sasmito A P, Kurnia J C, Birgersson E,et al,2015.Computational evaluation of thermal management strategies in an underground mine[J].Applied Thermal Engineering,(90):1144-1150.
State Administration for Market Regulation,Standardization Administration,2020. Safety regulations for metal and nonmetal mines: [S].Beijing:Standards Press of China.
Sun Yong, Wang Wei,2012.Numerical simulation of thermal environment of ventilation for mine roadway heading face based on fluent software[J].Coal Science and Technology,(7):31-34.
Torano J, Torno S, Menendez M,et al,2011.Auxiliary ventilation in mining roadways driven with roadheaders:Validated CFD modelling of dust behaviour[J].Tunnelling and Underground Space Technology,(1):201-210.
Wala A M, Vytla S, Taylor C D,et al,2007.Mine face ventilation:A comparison of CFD results against benchmark experiments for the CFD code validation[J].Mining Engineering,(59):49-55.
Wei D Y, Du C F, Xu H Y,et al,2019.Influencing factors and correlation analysis of ventilation and cooling in deep excavation roadway[J].Case Studies in Thermal Engineering,(14):100483.
Xie Heping, Gao Feng, Ju Yang,et al,2017.Novel idea and disruptive technologies for the exploration and research of deep earth[J].Advanced Engineering Science,49(1):1-8.
Xin Song, Liu Shangxiao, Zhang Xiao,et al,2020.Influence of different ventilation parameters on cooling of driving face[J].Safety in Coal Mines,(10):112-117.
Zhang N N, Zhang C, Yuan S,2021.Numerical simulation study on optimization of spray cooling mode in high temperature operation[J].IOP Conference Series:Earth and Environmental Science,(714):042027.
Zhang Ruiming, Wei Dingyi, Du Cuifeng,et al,2018.Experimental study on ventilation and cooling in excavation roadway[J].Metal Mine,47(9):171-175.
Zhang Ruiming, Wei Dingyi, Du Cuifeng,et al,2019.Ventilation and cooling test and numerical simulation in excavation roadway[J].Industrial Safety and Environmental Protection,(9):51-54.
Zhou Z, Cui Y, Tian L,et al,2019.Study of the influence of ventilation pipeline setting on cooling effects in high-temperature mines[J].Energies,(21):4074.
Zhou Z, Hu P, Qi C,et al,2018.The influence of ventilation arrangement on the mechanism of dust distribution in Woxi Pithead[J].Shock and Vibration,2018:1-13.
曹亚平,2021.矿井水平巷道通风降温影响因素数值模拟研究[J].内蒙古煤炭经济,(2):72-73.
崔益源,李坤,梅国栋,等,2021.深井热害分析与控制技术研究进展[J].有色金属(矿山部分),73(2):128-134.
杜翠凤,徐喆,唐占信,等,2016.掘进巷道通风降温的数值模拟及影响因素分析[J].金属矿山,45(2):151-155.
古德生,周科平,2012.现代金属矿业的发展主题[J].金属矿山,41(7):1-8.
国家市场监督管理总局,国家标准化管理委员会,2020. 金属非金属矿山安全规程: [S].北京:中国标准出版社.
李猛,魏巍,彭斌,等,2020.高温矿井作业区域共性分析与降温技术探讨[J].湖南有色金属,36(4):1-4,27.
李艳波,黄寿元,李刚,等,2011.抽出式局部通风掘进面热环境数值模拟研究[J].中州煤炭,(9):12-14,42.
李勇,褚召祥,姬建虎,等,2014.掘进巷道风流流场和温度场数值模拟[J].煤炭科学技术,(增1):142-145,148.
龙腾腾,周科平,陈庆发,等,2008.基于PMV指标的掘进巷道通风效果的数值模拟[J].安全与环境学报,(3):122-125.
莫苏鹏,陈磊,2020.广西某矿井高温热害分布规律调查研究[J].现代矿业,36(7):226-228.
孙勇,王伟,2012.基于Fluent的掘进工作面通风热环境数值模拟[J].煤炭科学技术,(7):31-34.
谢和平,高峰,鞠杨,等,2017.深地科学领域的若干颠覆性技术构想和研究方向[J].工程科学与技术,49(1):1-8.
辛嵩,刘尚校,张逍,等,2020.不同通风参数对掘进工作面降温的影响[J].煤矿安全,(10):112-117.
张瑞明,魏丁一,杜翠凤,等,2018.掘进巷道通风降温试验研究[J].金属矿山,47(9):171-175.
张瑞明,魏丁一,杜翠凤,等,2019.掘进巷道通风降温试验及数值模拟研究[J].工业安全与环保,(9):51-54.
[1] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[2] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[3] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[4] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[5] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[6] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[7] 聂兴信,刘哲伟,高赵祥,程平. 高温金属矿井巷道掘进中组合压冷风筒布位对降温效果的影响[J]. 黄金科学技术, 2022, 30(1): 85-92.
[8] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[9] 唐宇,王少锋. 单向受限应力下镐型截齿破岩特性及其影响因素分析[J]. 黄金科学技术, 2021, 29(5): 669-679.
[10] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[11] 景岳,王少锋,鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534.
[12] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[13] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[14] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[15] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .