img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (4): 640-653.doi: 10.11872/j.issn.1005-2518.2024.04.097

• 采选技术与矿山管理 • 上一篇    下一篇

基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究

何祥锐1(),邱贤阳1(),史秀志1,李小元1,2,支伟2,刘军2,王远来2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.广西中金岭南矿业有限责任公司,广西 来宾 546100
  • 收稿日期:2024-04-08 修回日期:2024-05-10 出版日期:2024-08-31 发布日期:2024-08-27
  • 通讯作者: 邱贤阳 E-mail:hexiangrui@csu.edu.cn;qiuxianyang_csu@163.com
  • 作者简介:何祥锐(1998-),男,湖北黄石人,硕士研究生,从事采矿技术研究工作。hexiangrui@csu.edu.cn
  • 基金资助:
    广西重点研发计划项目“复杂地表环境下地下矿山开采岩移规律及低沉降充填开采技术研究”(2022AB31023);中央引导地方科技发展资金项目“地下矿山层叠采空区地压监测控制及矿柱安全高效回采研究实验室”(来科中引专项20230402)

Study on the Movement Law of Overlying Strata in Underground Mining with Nonlinear Elastic Foundation Beam

Xiangrui HE1(),Xianyang QIU1(),Xiuzhi SHI1,Xiaoyuan LI1,2,Wei ZHI2,Jun LIU2,Yuanlai WANG2   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Guangxi Zhongjin Lingnan Mining Co. , Ltd. , Laibin 546100, Guangxi, China
  • Received:2024-04-08 Revised:2024-05-10 Online:2024-08-31 Published:2024-08-27
  • Contact: Xianyang QIU E-mail:hexiangrui@csu.edu.cn;qiuxianyang_csu@163.com

摘要:

为了研究地下金属矿充填开采覆岩移动规律,以盘龙铅锌矿采场作为研究对象,建立非线性弹性地基梁力学模型,开展了不同采场结构参数、顶板厚度、原岩应力及充填体配比对于覆岩移动的影响研究。研究发现5个因素对于覆岩移动的影响从强到弱依次为充填体配比、采场结构参数、顶板厚度、原岩应力,提高充填体配比是控制覆岩位移的关键。通过采用Flac3D数值模拟方法计算不同充填体配比下覆岩移动值,将数值模拟分析结果与力学理论计算结果进行对比,二者差异率在3%~9%之间,从而验证了力学模型计算结果的可靠性。基于研究结果,提出地下矿山充填开采覆岩沉降控制技术,并将其应用于工业试验。研究成果可为类似矿山进行岩层控制提供借鉴。

关键词: 非线性弹性地基梁, 数值模拟, 岩层移动控制, 充填开采, 覆岩移动规律, 位移监测

Abstract:

In the extraction of overlying orebodies in complex environments,it is imperative to prioritize safety and efficiency while preserving the stability of rock strata to prevent surface collapse and safeguard structures.To accomplish these objectives,it is essential to develop effective strategies for managing rock strata movement by comprehensively assessing the impact of underground backfill mining.An initial study was conducted on the impact of various mining field structural parameters,including roof thickness,original rock stress,and backfill ratio,on overlying rock movement at the Panlong lead-zinc mine.This analysis utilized a nonlinear elastic foundation beam mechanical model.Subsequent numerical simulations were performed to determine overlying rock movement values under varying backfill ratios.The results were compared to those obtained from the mechanical model,revealing differences ranging from 3% to 9%,thus validating the reliability of the mechanical model’s results.A ground mine backfill mining technology for controlling settlement of overlying rock was proposed and implemented in industrial experiments.Research findings suggest that the primary factors influencing overlying rock movement,in order of significance,are the backfill ratio,structural parameters of the mining field,roof thickness,and original rock stress.Increasing the backfill ratio is crucial for managing overlying rock displacement,while adjusting anchor support spacing and backfill ratio according to the mining field structure are effective methods for controlling overlying rock displacement.

Key words: nonlinear elastic foundation beam, numerical simulation, strata movement control, backfill mining, overlying rock movement patterns, movement monitoring

中图分类号: 

  • TD853

图1

大直径深孔侧向崩矿嗣后充填采矿方法示意图"

图2

非线性弹性地基顶板受力分析模型"

图3

不同采场宽度条件下非线性弹性地基顶板挠度与内力结果对比"

图4

不同采场长度条件下非线性弹性地基顶板挠度与内力结果对比"

图5

不同顶板厚度条件下非线性弹性地基顶板挠度与内力结果对比"

图6

不同原岩应力条件下非线性弹性地基顶板挠度与内力结果对比"

表1

4种充填体配比下的弹性地基系数"

序号充填配比k1/(N?m-3k2/(N?m-3k3/(N?m-3
11∶41.13×1072.00×1072.29×107
21∶84.57×1068.07×1069.25×106
31∶102.79×1064.93×1065.65×106
41∶121.92×1063.39×1063.88×106

图7

不同充填配比条件下非线性弹性地基顶板挠度与内力结果对比"

图8

覆岩移动规律数值模型"

表2

矿岩及充填体物理力学参数"

岩性容重/(kg·m-3弹性模量/GPa泊松比内摩擦角/(°)黏聚力/MPa抗拉强度/MPa体积模量/GPa剪切模量/GPa
矿体3 430300.24324.243.519.212.1
上盘围岩2 680320.23345.123.719.813.0
下盘围岩2 700350.23334.804.521.614.2
充填体(1∶4)1 9800.05730.18441.50.2820.450.03020.0242
充填体(1∶8)1 8900.02310.19638.70.1710.170.01270.0097
充填体(1∶10)1 8300.01410.21536.90.1430.10.00820.0058
充填体(1∶12)1 7200.00970.22733.20.1050.020.00590.0040

图9

不同配比充填体上覆岩层垂直位移云图"

图10

不同充填配比条件下覆岩垂直位移和水平位移"

表3

采场顶板最大下沉量计算结果对比"

充填配比采空区顶板沉降/mm差异率/%
力学模型数值模拟
1∶4-12.389-13.0405.25
1∶8-13.834-14.3203.51
1∶10-15.260-16.2076.21
1∶12-17.528-19.0788.84

图11

盘龙铅锌矿充填开采控制覆岩沉降基本原理"

图12

934北采场平面图(a)及位移监测点布置图(b)"

图13

JTM-V7000J型振弦式多点位移计孔内安装示意图"

图14

试验采场爆破效果图"

图15

934北采场顶板沉降时程曲线"

Cui X, Gao Y, Yuan D,2014.Sudden surface collapse disasters caused by shallow partial mining in Datong coal field,China[J].Natural Hazards,74(2):911-929.
Dai Huayang,2002.Study on seam inclination based mining subsidence model and its visualized application with GIS[J].Chinese Journal of Rock Mechanics and Engineering,(1):148.
Deng X, Yuan Z, Lan L,et al,2020.Roof movement and failure behavior when mining extra-thick coal seams using upward slicing longwall-roadway cemented backfill technology[J].Advances in Materials Science and Engineering,2020:e5828514.
Guo Kaikai,2022.Research on Strata Movement Rule and Control in Deep Solid Backfilling Mining[D].Beijing:China University of Mining and Technology.
Han Longqiang, Wu Shunchuan, Li Zhipeng,2016.Study of non-proportional strength reduction method based on Hoek-Brown failure criterion[J].Rock and Soil Mechanics,37:690-696.
Hu Wanjie,2023.Application of Refined GSI Geological Model in Slope Stability Analysis and Research[D].Changsha:Changsha Mining Research Institute.
Huang Dan, Yu Bin, Wang Yunchang,et al,2024.Study on aluminum mining under coal and uniform settlement control technology of overlying rock[J].Journal of Mining and Safety Engineering,41(1):95-106.
Kim K D, Lee S, Oh H J,et al,2006.Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS[J].Environmental Geology,50(8):1183-1191.
Lan Lixin,2018.Roof Movement Analysis in the Backfill Mining Area Based on Nonlinear Elastic Foundation Beam[D].Beijing:China University of Mining and Technology(Beijing).
Loganathan N, Poulos H G,1998.Analytical prediction for tunneling-induced ground movements in clays[J].Journal of Geotechnical and Geoenvironmental Engineering,124(9):846-856.
Luo Xiao,2021.Study on safety thickness of layered-roof based on improved Protodyakonov equilibrium arch theory[J].Coal Science and Technology,49(11):73-80.
Ma Shaowei,2022.Study on Collaborative Mining Theory and Roof Strata Mechanical Behavior of Deep Gently Inclined Medium-Thick Orebody[D].Changsha:Central South University.
Nie Yuxu,2023.Temporal and Spatial Evolution Law of Mining Fissures in Thick Sandstone Roof and Evaluation of Water Inrush Risk[D].Beijing:China University of Mining and Technology(Beijing).
Ortlepp W D, Stacey T R,1998.Performance of tunnel support un-der large deformation static and dynamic loading[J].Tunnelling and Underground Space Technology,13(1):15-21.
Qian Minggao, Li Hongchang,1982.Activity rules of overlying rock strata in mining areas and their influence on mine pressure[J].Journal of Coal Science,(2):1-12.
Qin Chaoliang, Long Jianhui, Jing Ming,et al,2015.Comprehensive management scheme of geological hazards and ecological environment in coal mining subsidence areas[J].Coal Technology,34(3):320-323.
Wang C, Li S,2020.An innovative strata movement model for predicting overlying strata deformations[J].Geotechnical and Geological Engineering,38(6):5771-5785.
Wang Zhengshuai,2011.Study on the Non-linear Prediction Theory of Old Goaf Residual Subsidence and Its Application[D].Beijing:China University of Mining and Technology(Beijing).
Xu Yang,2023.The Overburden and Surface Deformation Characteristics of Deep Coal Mine Filling Mining Considering the Residual Deformation of Old Goaf[D].Hefei:Anhui University of Science and Technology.
Zhang Y, Cao S, Gao R,et al,2018.Prediction of the heights of the water-conducting fracture zone in the overlying strata of shortwall block mining beneath aquifers in western China[J].Sustainability,10(5):1636.
Zhang Z J, Liu Y, He G C,et al,2012.Study on the effect of mined-out region on ground subsidence[J].Advanced Materials Research,524/525/526/527:726-730.
Zhao Guojing, Qian Minggao,1987.Deformation movement and mine pressure of hard rock layers in mining areas[J].Journal of Coal Science,(3):1-8.
Zhu Shidong,2015.Study on the Laws of Overlying Strata Movement and Surface Subsidence in Wanghe Coal Mine Paste Filling[D].Jiaozuo:Henan University of Science and Technology.
戴华阳,2002.基于倾角变化的开采沉陷模型及其GIS可视化应用研究[J].岩石力学与工程学报,(1):148.
郭凯凯,2022.深部固体充填开采岩层移动规律及控制研究[D].北京:中国矿业大学.
韩龙强,吴顺川,李志鹏,2016.基于Hoek-Brown准则的非等比强度折减方法[J].岩土力学,37:690-696.
虎万杰,2023.精细化GSI地质模型在边坡稳定性分析研究中的应用[D].长沙:长沙矿山研究院.
黄丹,余斌,王云昌,等,2024.煤下铝上行开采工艺控制覆岩均匀沉降研究[J].采矿与安全工程学报,41(1):95-106.
兰立信,2018.基于非线性弹性地基梁的充填采场顶板运动研究[D].北京:中国矿业大学(北京).
罗霄,2021.基于改进普氏平衡拱理论的层状顶板安全厚度研究[J].煤炭科学技术,49(11):73-80.
马少维,2022.深部缓倾斜中厚矿体协同开采理论及顶板岩层力学行为研究[D].长沙:中南大学.
聂宇旭,2023.厚砂岩顶板采动裂隙发育时空演化规律及突水危险性评价[D].北京:中国矿业大学(北京).
钱鸣高,李鸿昌,1982.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,(2):1-12.
秦朝亮,龙建辉,经明,等,2015.采煤塌陷区内地质灾害与生态环境的综合治理方案[J].煤炭技术,34(3):320-323.
王正帅,2011.老采空区残余沉降非线性预测理论及应用研究[D].北京:中国矿业大学(北京).
徐阳,2023.顾及老采空区残余变形的深部煤矿充填开采覆岩及地表变形特征[D].合肥:安徽理工大学.
赵国景,钱鸣高,1987.采场上覆坚硬岩层的变形运动与矿山压力[J].煤炭学报,(3):1-8.
朱时东,2015.王河矿膏体充填开采覆岩移动变形及地表沉陷规律研究[D].焦作:河南理工大学.
[1] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[2] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[3] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[4] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[5] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[6] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[7] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[8] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[9] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[10] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[11] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[12] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[13] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[14] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[15] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!