img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 511-522.doi: 10.11872/j.issn.1005-2518.2024.03.001

• 采选技术与矿山管理 • 上一篇    下一篇

高应力扇形中深孔采场边帮控制爆破参数优化

李波1(),温晨2,史秀志1()   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.紫金(长沙)工程技术有限公司,湖南 长沙 410017
  • 收稿日期:2023-12-14 修回日期:2024-01-14 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 史秀志 E-mail:2973241771@qq.com;baopo@csu.edu.cn
  • 作者简介:李波(1999-),男,江西丰城人,硕士研究生,从事采矿与爆破方面的研究工作。2973241771@qq.com
  • 基金资助:
    ‘十四五’重点研发计划项目“特大型多金属资源高通量分选关键技术与装备”(2022YFC2904602)

Optimization of Stope Sidewall Controlled Blasting Parameters for High-Stress Fan-Shaped Medium-Depth Hole

Bo LI1(),Chen WEN2,Xiuzhi SHI1()   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Zijin(Changsha) Engineering Technology Co. , Ltd. , Changsha 410017, Hunan, China
  • Received:2023-12-14 Revised:2024-01-14 Online:2024-06-30 Published:2024-07-05
  • Contact: Xiuzhi SHI E-mail:2973241771@qq.com;baopo@csu.edu.cn

摘要:

针对扇形孔采场爆破边帮控制问题,提出了一种将靠近边帮的扇形炮孔施工成垂直平行孔用以控制边帮的构想。首先,通过理论计算得到4组平行炮孔不耦合系数与炮孔间距匹配下的模型参数,使用LS-DYNA对4组参数进行数值模拟;然后,通过对比分析4组模型在无地应力作用和不同方向地应力作用时的爆破裂纹扩展情况,获得最优参数;最后基于优化参数开展工业试验。结果表明:高地应力会促进最大应力方向爆破裂纹扩展;4种模型中,不耦合系数为1.65,炮孔间距为1.1 m时开挖区域破岩效果最为合理;在试验采场开展工业试验,使用优化后的爆破参数进行爆破,采场回采后边帮平整,稳定性较好,验证了研究结论的正确性。

关键词: 边帮控制爆破, 高地应力, 理论计算, 数值模拟, 扇形孔, 爆破裂纹扩展

Abstract:

At present,most of the fan-shaped hole stope blasting is difficult to achieve direct control of the sidewalls,and fan-shaped holes due to the special characteristics of its own structure can not be avoided to cause a certain amount of over-excavation or under-excavation.Aiming at the problem of controlling the sidewalls of the blasting of fan-shaped holes in the stope,a concept of constructing the fan-shaped holes close to the sidewalls into vertical parallel holes for controlling the sidewalls was proposed.Sidewall controlled blasting technology generally utilizes air-uncoupled charge structures to achieve.The model parameters of four groups of parallel boreholes under the uncoupling coefficient and spacing matching were obtained by theoretical calculation.The numerical simulation was carried out by LS-DYNA,and the blasting crack propagation of the four groups of models without in-situ stress and in different directions of in-situ stress was compared.The stress conditions of the three schemes are different.In scheme 1,four models are numerically simulated under the condition of no ground stress.In scheme 2,when the direction of the maximum horizontal stress is the same as that of the stope layout,30 MPa is loaded in the X direction and 60 MPa in the Y direction.In scheme 3,when the direction of maximum horizontal stress is perpendicular to the direction of stope layout,60 MPa is loaded in X direction and 30 MPa is loaded in Y direction.After analyzing the blasting crack propagation and blasting effect,it is found that high geostress promotes the propagation of blasting cracks in the direction of the maximum stress.When the stope is arranged parallel to the direction of maximum horizontal stress,the propagation of blasting cracks in the rock between the lines of the blast holes is promoted,which is beneficial to the breaking of rock.The propagation of blasting cracks in the rock between the blast hole and the surrounding rock will be restricted,which is beneficial to the protection of the sidewalls.When the stope is arranged vertically along the direction of the maximum horizontal stress,the propagation of blasting cracks in the rock is promoted,which is not beneficial to the protection of the sidewalls.Therefore,the direction of the stope layout should be the same as the direction of the maximum horizontal principal stresses.Statistics on the four models of excavation area damage rock,the uncoupling coefficient of 1.65,neighboring parallel hole spacing of 1.1 m is the most reasonable.Industrial experiments were carried out in the test stope,using the optimized blasting parameters for blasting,and the sidewalls were smooth and stable after the stope was mined,which verified the reasonableness of the blasting scheme.

Key words: sidewall controlled blasting, high geo-stress, theoretical calculations, numerical simulation, fan-shaped hole, blasting crack propagation

中图分类号: 

  • TD235

图1

常规扇形孔采场边帮爆破示意图"

图2

上向扇形中深孔采场示意图(优化后)"

图3

炮孔间距计算结果"

表1

不耦合系数与炮孔间距匹配关系"

模型不耦合系数K炮孔间距L /m
11.361.44
21.651.13
32.110.84
42.880.58

图4

模型简化示意图"

图5

数值计算分析模型和炮孔模型"

表2

谦比希铜矿东南矿体岩石物理力学参数"

参数数值参数数值
密度/(kg·m-32 800泊松比μ0.23
抗拉强度/MPa14.28黏聚力/MPa28.66
单轴抗压强度/MPa130.0内摩擦角/(°)44.97
弹性模量/GPa52.13

表3

RHT模型参数"

参数取值参数取值参数取值
ρ02 800 kg/m3A245 GPaQ00.68
Pel43.3 MPaA316.7 GPaB0.05
Pcmop6 GPaB01.4βc0.0098
N3.0B11.4βt0.013
α01.1T132.1 GPaεoc3e-5
A132.1 GPaT20PTF0.001
fc130.0 MPaεot3e-6D10.04
ft*0.11εc3e25D21.0
fs*0.22εt3e25εpm0.001
G21.1 GPagc*0.53Af0.25
A2.45gt*0.7nf0.62
N0.74ξ0.5EPSF2.0

表4

炸药及其状态方程参数"

参数数值参数数值
ρe /(kg·m-31 150R15.78
Vd/(m·s-14 000R22.08
PCJ/GPa4.6ω0.03
A/GPa177e0/GPa7
B/GPa9.9

表5

模拟方案"

方案编号加载模型初始应力条件
方案1模型1无地应力
模型2
模型3
模型4
方案2模型1X方向30 MPa,Y方向60 MPa
模型2
模型3
模型4
方案3模型1X方向60 MPa,Y方向30 MPa
模型2
模型3
模型4

图6

采场平行最大水平应力布置时应力初始化云图"

图7

采场垂直最大水平应力布置时应力初始化云图"

图8

无应力条件下4种模型爆破裂纹最终分布"

图9

采场平行最大水平应力方向条件下4种模型爆破裂纹最终分布"

图10

采场垂直最大水平应力方向条件下4种模型爆破裂纹最终分布"

图11

监测点应力状态"

图12

受力状态分析"

图13

O点受力分析"

图14

失效单元统计"

图15

炮孔示意图及边帮效果对比图"

图16

现场照片"

Dai Jun,2001.Calculation of radii of the broken and cracked areas in rock by a long charge explosionc[J].Journal of Liaoning Technical University(Natural Science),20(2):144-147.
Dai Jun,2013.Dynamic Behaviors and Blasting Theory of Rock[M].Beijing:Metallurgical Industry Press.
Fan D Y, Liu X S, Tan Y L,et al,2020.Numerical simulation research on response characteristics of surrounding rock for deep super-large section chamber under dynamic and static combined loading condition[J].Journal of Central South University,27(12):3544-3566.
Huo Xiaofeng, Shi Xiuzhi, Gou Yonggang,2019.Simulation of crack growth in sidewall controlled blasting and parameter optimization[J].Blasting,36(1):21-28.
Li Hongchao,2016.The Study of the Rock RHT Model and to Determine the Values of Main Parameters[D].Beijing:China University of Mining and Technology (Beijing).
Liang Dongbiao,2019.Study on the Influence of Periphery Hole Blasting Parameters on Surrounding Rock Damage and Overbreak and Underbreak of Tunnel[D].Chengdu:South-west Jiaotong University.
Luo S, Yan P, Lu W B,et al,2021.Effects of in-situ stress on blasting damage during deep tunnel excavation[J].Arabian Journal for Science and Engineering,46(11):11447-11458.
Meng N K, Bai J B, Chen Y,et al,2021.Stability analysis of roadside backfill body at gob-side entry retaining under combined static and dynamic loading[J].Engineering Failure Analysis,127:105531.
Peng J Y, Zhang F P, Du C,et al,2020.Effects of confining pressure on crater blasting in rock-like materials under electric explosion load[J].International Journal of Impact Engineering,139:103534.
Song Junsheng, Wang Yanbing, Gao Xiangtao,et al,2016.The mechanism of directional fracture controlled blasting and its application[J].Journal of Mining Science and Technology,1(1):16-28.
Tong Xiaodong,2020.Study on Optimization of Smooth Blasting Parameters and Over-Under Excavation in Karst Tunnel[D].Chongqing:Chongqing Jiaotong University.
Wen Chen, Qiao Qiuqiu, Qiu Xianyang,et al,2023.Simulation of crack propagation induced by short delay blasting with blastholes in a combined fan pattern for deep well[J].Mining and Metallurgical Engineering,43(1):26-31.
Xie L X, Lu W B, Zhang Q B,et al,2017.Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J].Tunnelling and Underground Space Technology,66:19-33.
Xu Ying, Gu Keke, Ge Jinjin,et al,2022.Experimental study on effect of charge uncoupling coefficient on crack propagation in rock by blasting under initial in-situ stresses[J].Blasting,39(4):1-9.
Xu Ying, Zong Qi,2000.Theoretical analysis on the parameters of smooth blasting soft mat layer charging construction[J].Journal of China Coal Society,25(6):610-613.
Yan Shilong, Xu Ying,2005.Numerical simulation of water-coupled charge rock blasting mechanism [J].Chinese Journal of Underground Space and Engineering,1(6):921-924,943.
Yang Yuezong,2018.Research into the Parameter Optimization of Smooth Blasting and Application in Xinlin Tunnel[D].Xi’an:Xi’an University of Architecture and Technology.
Yi C P, Sjöberg J, Johansson D,et al,2017.A numerical study of the impact of short delays on rock fragmentation[J].International Journal of Rock Mechanics and Mining Sciences,100:250-254.
Yin Shunlang,2016.Study on Blasting Damage Scale by Uncoupling Charge in Typical Strata in Chongqing[D].Chongqing:Chongqing Jiaotong University.
Zhang F P, Peng J Y, Qiu Z G,et al,2017.Enhancement of low-contrast thermograms for detecting the stressed tunnel in horizontally stratified rocks[J].Engineering Geology,220:266-273.
Zong Qi, Lu Pengju, Luo Qiang,2005.Theoretical study on axial decoupling coefficients of smooth blasting with air cushion charging construction[J].Chinese Journal of Rock Mechanics and Engineering,24(6):1047-1051.
戴俊,2001.柱状装药爆破的岩石压碎圈与裂隙圈计算[J].辽宁工程技术大学学报(自然科学版),20(2):144-147.
戴俊,2013.岩石动力学特性与爆破理论[M].北京:冶金工业出版社.
霍晓锋,史秀志,苟永刚,2019.边帮控制爆破裂纹扩展模拟及参数优化[J].爆破,36(1):21-28.
李洪超,2016.岩石RHT模型理论及主要参数确定方法研究[D].北京:中国矿业大学(北京).
梁东彪,2019.周边孔爆破参数对隧道围岩损伤及超欠挖的影响研究[D].成都:西南交通大学.
宋俊生,王雁冰,高祥涛,等,2016.定向断裂控制爆破机理及应用[J].矿业科学学报,1(1):16-28.
童小东,2020.岩溶隧道光面爆破参数优化与超欠挖控制研究[D].重庆:重庆交通大学.
温晨,乔秋秋,邱贤阳,等,2023.深井扇形组合孔短延时爆破裂纹扩展模拟研究[J].矿冶工程,43(1):26-31.
徐颖,顾柯柯,葛进进,等,2022.装药不耦合系数对初始地应力下岩石爆破裂纹扩展影响的试验研究[J].爆破,39(4):1-9.
徐颖,宗琦,2000.光面爆破软垫层装药结构参数理论分析[J].煤炭学报,25(6):610-613.
颜事龙,徐颖,2005.水耦合装药爆破破岩机理的数值模拟研究 [J].地下空间与工程学报,1(6):921-924,943.
杨跃宗,2018.新林隧道光面爆破参数优化研究及工程应用[D].西安:西安建筑科技大学.
殷顺浪,2016.重庆典型地层不耦合装药岩石爆破损伤范围研究[D].重庆:重庆交通大学.
宗琦,陆鹏举,罗强,2005.光面爆破空气垫层装药轴向不耦合系数理论研究[J].岩石力学与工程学报,24(6):1047-1051.
[1] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[2] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[3] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[4] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[5] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[6] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[7] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[8] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[9] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[10] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[11] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[12] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[13] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[14] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[15] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!