img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 445-457.doi: 10.11872/j.issn.1005-2518.2024.03.042

• 采选技术与矿山管理 • 上一篇    下一篇

云锡高峰山矿段矿柱回采方案研究

虞云林1(),侯克鹏2,杨八九1(),程涌1,卢泰宏3,张楠楠3   

  1. 1.云南亚融矿业科技有限公司,云南 昆明 650093
    2.昆明理工大学国土资源工程学院,云南 昆明 650093
    3.云锡设计院有限公司,云南 个旧 661000
  • 收稿日期:2024-02-02 修回日期:2024-04-09 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 杨八九 E-mail:229651176@qq.com;1335644678@qq.com
  • 作者简介:虞云林(1994-),男,云南大理人,工程师,从事采矿与岩石力学方面的研究工作。229651176@qq.com

Study on Pillar Mining Scheme of Gaofengshan Ore Section in Yunxi

Yunlin YU1(),Kepeng HOU2,Bajiu YANG1(),Yong CHENG1,Taihong LU3,Nannan ZHANG3   

  1. 1.Yunnan Yarong Mining Technology Co. , Ltd. , Kunming 650093, Yunnan, China
    2.School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
    3.Yunxi Design Institute Co. , Ltd. , Gejiu 661000, Yunnan, China
  • Received:2024-02-02 Revised:2024-04-09 Online:2024-06-30 Published:2024-07-05
  • Contact: Bajiu YANG E-mail:229651176@qq.com;1335644678@qq.com

摘要:

为了更合理地回收云锡老厂分公司残矿资源,运用FLAC3D数值模拟软件对高峰山矿段残留矿柱回采进行模拟分析,提出6种不同的矿柱回收方案,针对分析结果确定了合适的矿柱回采工艺,并开展了工业试验。结合矿山实际情况,从多个维度分析剩余矿柱是否具备回收条件和回收价值。结果表明:可采用进路规格为4 m×4 m的两步骤胶结充填采矿法进行矿柱回采,一步骤胶结充填强度大于3.52 MPa,二步骤充填强度大于1.08 MPa;矿段内有4条矿柱相对完整、保有资源量大且品位高,现阶段具备回采条件,其中南盘区4#盘区矿柱需在锡精矿市场金属价格大于24.48万元/t时进行回采,其余3条矿柱可在锡精矿市场金属价格大于10.05万元/t时进行回采。

关键词: 残矿资源, 数值模拟, 矿柱置换, 矿柱回采, 回采条件, 胶结充填采矿法

Abstract:

In order to make the residual ore resources of Yunxi Old Factory Branch get better recycling,in view of the situation that there are a large number of residual pillars in the panel area of Gaofengshan ore section,after the completion of the on-site engineering geological investigation,representative rock samples were selected to conduct the rock mechanics test,and the result parameters were obtained.FLAC3D numerical simulation method was used to analyze the stability of the stope before the recovery of the pillars,and the law of ground pressure appearance in each panel area was obtained.Combined with the actual situation of the mine,it is concluded that the two methods of extracting the mining pillar and replacing the pillar are suitable for the recovery of the pillar in the mining area.On this basis,six pillar recovery schemes were considered under ideal conditions,and after comparative analysis,only the two-step collodion-filled room-and-pillar mining method is suitable for recovering the security ore in this mine.Through the filling mechanical parameter experiments,the filling body parameters required for two-step spaced back mining were derived after comparing multiple schemes.At the same time,the pillar recovery process was discussed in detail,and the industrial test of pillar recovery was carried out in areas with different degrees of geopressure manifestation.From the experimental results,the top plate of the pillar can be kept stable during and after the pillar recovery process.Based on the actual situation,the 13 pillars in the mining section were analyzed in terms of the resource grade of the pillars,the stability of the surrounding empty area,the need for protection works above the pillars,the economic benefits of mining and the price break-even.After the study,it is concluded that through the results of industrial test,the two-step cemented filling mining method with the specifications of 4 m×4 m can be used for the pillar mining,with the strength of one-step cemented filling is greater than 3.52 MPa and the strength of two-step filling is greater than 1.08 MPa.There are four pillars in the section with relatively intact,large amount of retained resources and high grade,which are in good condition for mining.The 4# pillar panel in the south plate area should be mined when the market metal price of tin concentrate is more than 244 800 yuan/t.The remaining 3 ore pillars can be mined when the market metal price of tin concentrate is more than 100 500 yuan/t.

Key words: residual ore resources, numerical simulation, pillar replacement, pillar mining, mining condition, cemented filling mining method

中图分类号: 

  • TD853

图1

高峰山矿段1-1矿体剖面图"

图2

高峰山矿段采区及矿柱资源分布图"

表1

矿柱特征及资源量情况"

盘区名称矿柱名称矿柱特征资源量情况
走向长度/m宽度/m资源量/t锡品位/%锡金属量/t铜品位/%铜金属量/t
中盘区1#盘区矿柱东西4002053 2400.4792550.714380
5#盘区矿柱南北3131044 3200.212940.508225
1#采区间柱南北3131056 6900.2711530.841476
2#采区间柱东西401010 7800.343371.132122
3#采区间柱东西3401015 3600.202310.52180
南盘区2#盘区矿柱东西53220134 1900.8061 0820.685919
3#盘区矿柱东西4752098 6400.101990.457451
4#盘区矿柱南北2321555 5000.4722620.524291
1#采区间柱南北731211 3200.01820.0273
2#采区间柱南北731225 0400.181450.607152
3#采区间柱东西2301257 1200.4252430.394225
4#采区间柱东西1851220 2500.6671352.691545
5#采区间柱南北711222 9500.105240.04410
采场间柱东西46012329 0000.6322 0800.9042 974
合计934 4000.4864 5420.7336 853

图3

矿区采场三维数值模型示意图"

图4

各采区位移云图"

表2

计算方案"

计算方案回收矿柱的方式回收方案备注
方案1抽采矿柱依据地压显现程度,按中一采→中二采→南二采→南一采→南三采→南四采的顺序回采盘区矿柱和采区矿柱,不采采场间柱图5(a)
方案2抽采矿柱以方案1回采顺序回采采场间柱,不采盘区矿柱和采区矿柱图5(b)
方案3抽采矿柱以方案1回采顺序间隔式抽采盘区矿柱和采场矿柱,抽采跨度为I(10 m)、Ⅱ(20 m)、Ⅲ(30 m)、Ⅳ(40 m),不采采场间柱图5(c)
方案4抽采矿柱以方案1回采顺序间隔式抽采采场间柱,即间隔1个采场回收间柱图5(d)
方案5置换矿柱以方案1回采顺序,按跨度I(10 m)、Ⅱ(20 m)、Ⅲ(30 m)、Ⅳ(40 m)的方案置换盘区矿柱和采场矿柱图5(e)
方案6置换矿柱以方案1回采顺序,采用两步骤间隔回采的房柱采矿法,将矿柱划分为矿房和矿柱进行回收图5(f)

图5

高峰山矿段回采方案示意图"

图6

矿柱回采方案1~方案4计算云图"

表3

4种回采方案计算结果对比"

回采方案矿柱位移/cm矿柱塑性区贯穿百分比/%备注
方案11 208.1100图5(a)
方案2491.383图5(b)
方案3-Ⅰ514.973图5(c)
方案3-Ⅱ517.776
方案3-Ⅲ516.481
方案3-Ⅳ515.588
方案4173.246图5(d)

表4

数值模拟结果对比"

回采方案矿柱位移/cm矿柱塑性区贯穿百分比/%
方案5-Ⅰ382.552
方案5-Ⅱ386.457
方案5-Ⅲ384.766
方案5-Ⅳ383.473
方案68.216

图7

矿柱回采方案5和方案6计算云图"

表5

充填体强度力学参数"

回采步骤灰砂配比

内聚力

c/MPa

内摩擦角

?/(°)

切变模量

g/MPa

体积模量

k/MPa

抗压强度

σ1/MPa

抗拉强度

σ3/MPa

容重

γ/(kN·m-3

一步骤1∶40.69340.250.433.520.4318.2
二步骤1∶100.37350.060.121.080.0819.5

图8

矿柱回采工艺"

图9

工业试验过程"

表6

矿柱回收条件分析"

盘区名称矿柱名称周边空区稳定性有无需要保护工程其他因素现阶段是否具备回采条件
中盘区1#盘区矿柱稳定通风、充填工程
5#盘区矿柱不稳定中段工程
1#间柱不稳定
2#间柱不稳定
3#间柱不稳定
南盘区2#盘区矿柱稳定中段工程
3#盘区矿柱稳定中段工程品位低于工业指标
4#盘区矿柱稳定具备
1#采区矿柱稳定中段工程品位低于工业指标
2#采区矿柱稳定具备
3#采区矿柱稳定
4#采区矿柱稳定具备
5#采区矿柱稳定通风、充填工程品位低于工业指标
采区间柱稳定间柱部分发生垮塌具备
Chen Zhiying, Liu Zhixiang, Li Xibing,et al,2023.Numerical simulation and optimization of recovery scheme for residual ore pillars [J].Journal of Central South University(Science and Technology),54(6):2150-2161.
Du K, Li X, Su R,et al,2022.Shape ratio effects on the mechanical characteristics of rectangular prism rocks and isolated pillars under uniaxial compression[J].International Journal of Mining Science and Technology,32(2):347-362.
Gao Feng, Li Chengcheng, Qin Qinghan,et al,2023.Stability analysis of pillar group in crushed disk area based on RG-BN theory[J].Gold Science and Technology,31(6):900-910.
Guo Qi,2023.Study on Optimization of Mining Method and Simulation of Mining Sequence of Residual Ore Pillar in a Lead-Zinc Mine[D].Kunming:Kunming University of Science and Technology.
Guo Y H, Miao Y C,2022.Study on stope stability in continuous mining of long-dip,thin orebody by room-pillar method[J].Sustainability,14(15):9601-9601.
Kou Yongyuan, Li Guang, Zou Long,et al,2020.Research on the mining method of +1 000 m middle horizontal ore pillar in Jinchuan Ⅱ mine[J].Gold Science and Technology,28(3):353-362.
Li Junping, Zhang Hao, Zhang Bochun,et al,2018.Numerical analysis of pillar recovery and pressure relief mining effect of open stope mining of steeply inclined orebody[J].Journal of Safety and Environment,18(1):101-106.
Lin Min, Yuan Qingmeng, Wang Qianyuan,2022.Numerical simulation study on panel pillar recovery and backfill stability [J].Metal Mine,51(6):24-28.
Liu Yang, Li Xudong, Chen Shijiang,et al,2022.Study on synergetic mining technology of remaining ore based on the critical caving span theory [J].Mining Research and Development,42(10):13-18.
Lu Taihong, Zhang Nannan, Yu Yunlin,et al,2022.Optimization of stope structure parameters in Yunxi Gaofengshan mine section[J].Mining Technology,22(6):180-184.
Ma Yinyu,2023.Residual ore recovery technology and economic benefit evaluation based on prestressed expansion pillar support[J].Mining Research and Development,42(10):13-18.
Meng Qingwen, Li Zhihong, Wei Song,2020.Research and application of roof reclaimed pillar-filled room column method for mining complex and difficult ore bodies[J].Mining Technology,20(6):4-6.
Peng Zhaozhi, Jiang Jian, Ren Qinglin,et al,2023.Study on critical concentration and rheological characteristics of all tailings slurry in Kafang,Yunnan [J].Mining Technology,23(3):160-165.
Sun Jian, Zhou Yanfeng, Zheng Liangzhong,2020.Research on optimization of pillar mining scheme in complex goaf in Jiacun silver polymetallic mine[J].China Mining Industry,29(7):152-157.
Wang Dongyi, Peng Kang, Yin Xuyan,et al,2017.Structural parameter optimization for peach-figure pillars of stage mining method based on numerical analysis[J].Mining and Metallurgical Engineering,37(6):12-17.
Xia K Z, Chen C X, Liu X T,et al,2023.Assessing the stability of high-level pillars in deeply-buried metal mines stabilized using cemented backfill[J].International Journal of Rock Mechanics and Mining Sciences,170:105489.
Xie Jinyi, Yalei Zhe,2021.Similarity and numerical simulation of surrounding rock deformation in open-pit mining [J].Mining Engineering Research,36(2):31-35.
Xiong Xiaobo, Cheng Haiyong, Wu Shunchuan,et al,2021.Analysis on mechanical response and stability of mine pillar under subarea synergetic mining[J].Journal of Safety Science and Technology,17(8):77-83.
Xu B, Yue Z W, Li Y L,et al,2022.Research on the control of overburden deformation by filling ratio of cementing filling method with continuous mining and continuous backfilling[J].Environmental Science and Pollution Research International,30(10):26764-26777.
Xu Dazhi, Ding Fulong, Sun Dehui,2022.Research on the top pillar recovery process of a gold mine by shallow hole retention method[J].Uranium Mining and Metallurgy,41(3):238-242.
Xu Lulu, Zhang Qinli, Feng Ru,2021.Numerical simulation of filling body strength based on optimized structural parameters of quarry[J].Gold Science and Technology,29(3):421-432.
Yang Taobo, Wang Xiaojun, Xiong Xueqiang,et al,2011.Reasonable width design of artificial pillar for deep mining by room-and-pillar method[J].Nonferrous Metals Science and Engineering,2(2):83-85.
Zhou Z, Zhao Y, Cao W,et al,2018.Dynamic response of pillar workings induced by sudden pillar recovery[J].Rock Mechanics and Rock Engineering,51(10):3075-3090.
Zhu Bin, Zhang Baichun, Li Xiaohui,et al,2022.Study and application of pillar recovery scheme in Dongtangzi lead-zinc mine [J].Mining Research and Development,42(6):5-8.
Zhu Wancheng, Dong Hangyu, Liu Xige,et al,2022.Review of bearing and instability of multi-pillar in metal mines[J].Jou-rnal of Mining and Strata Control Engineering,4(4):5-31.
陈祉颖,刘志祥,李夕兵,等,2023.残矿矿柱回采方案数值模拟与优化研究[J].中南大学学报(自然科学版),54(6):2150-2161.
高峰,李成成,覃庆韩,等,2023.基于RG-BN理论的破碎盘区矿柱群稳定性分析[J].黄金科学技术,31(6):900-910.
郭琦,2023.某铅锌矿残矿矿柱回采方法优选和回采顺序模拟研究[D].昆明:昆明理工大学.
寇永渊,李光,邹龙,等,2020.金川二矿区+1 000 m中段水平矿柱回采方法研究[J].黄金科学技术,28(3):353-362.
李俊平,张浩,张柏春,等,2018.急倾斜矿体空场法开采的矿柱回收与卸压开采效果数值分析[J].安全与环境学报,18(1):101-106.
林敏,袁庆盟,王谦源,2022.盘区矿柱回收与充填体稳定性的数值模拟研究[J].金属矿山,51(6):24-28.
刘洋,李旭东,陈世江,等,2022.基于临界冒落跨度理论的残矿协同开采技术研究[J].矿业研究与开发,42(10):13-18.
卢泰宏,张楠楠,虞云林,等,2022.云锡高峰山矿段采场结构参数优化[J].采矿技术,22(6):180-184.
马印禹,2023.基于预应力膨胀支柱支护的残矿回采技术及经济效益评价[J].矿业研究与开发,43(6):22-26.
孟清文,李志宏,韦松,2020.顶板再造充柱房柱法开采复杂难采矿体的研究与应用[J].采矿技术,20(6):4-6.
彭朝智,蒋艰,任青林,等,2023.云锡卡房全尾砂料浆临界浓度与流变特性研究[J].采矿技术,23(3):160-165.
孙健,周延锋,郑良忠,2020.呷村银多金属矿复杂空区矿房矿柱回采方案优选研究[J].中国矿业,29(7):152-157.
王栋毅,彭康,尹旭岩,等,2017.阶段出矿底部桃形矿柱的结构参数数值计算分析[J].矿冶工程,37(6):12-17.
谢晋谊,者亚雷,2021.空场法开采围岩变形相似模拟与数值模拟[J].矿业工程研究,36(2):31-35.
熊晓勃,程海勇,吴顺川,等,2021.分区协同开采下矿柱力学响应与稳定性分析[J].中国安全生产科学技术,17(8):77-83.
徐大智,丁福龙,孙德辉,2022.某金矿浅孔留矿法采场顶柱回收工艺研究[J].铀矿冶,41(3):238-242.
徐路路,张钦礼,冯如,2021.基于采场结构参数优化后的充填体强度数值模拟[J].黄金科学技术,29(3):421-432.
杨涛波,王晓军,熊雪强,等,2011.房柱法深部开采人工矿柱合理宽度设计[J].有色金属科学与工程,2(2):83-85.
朱斌,张柏春,李晓辉,等,2022.东塘子铅锌矿矿柱回采方案研究及应用[J].矿业研究与开发,42(6):5-8.
朱万成,董航宇,刘溪鸽,等,2022.金属矿山多矿柱承载与失稳破坏研究[J].采矿与岩层控制工程学报,4(4):5-31.
[1] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[2] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[3] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[4] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[5] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[6] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[7] 高峰, 李成成, 覃庆韩, 欧恩国. 基于RG-BN理论的破碎盘区矿柱群稳定性分析[J]. 黄金科学技术, 2023, 31(6): 900-910.
[8] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[9] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[10] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[11] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[12] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[13] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[14] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[15] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!