img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (4): 531-545.doi: 10.11872/j.issn.1005-2518.2023.04.118

• Mineral Exploration and Resource Evaluation •     Next Articles

Characteristics of Cobalt-bearing Minerals in Hydrothermal Cobalt Deposits in Northeastern Hunan Province and Their Implication for Mineralization

Juntao NING(),Baoliang HUANG(),Guojun DONG,Yueqiang ZHOU,Zhuolong GAO,Bo KANG   

  1. Hunan Institute of Geological Disaster Investigation and Monitoring,Changsha 410004,Hunan,China
  • Received:2022-09-13 Revised:2022-11-22 Online:2023-08-30 Published:2023-09-20
  • Contact: Baoliang HUANG E-mail:1195516373@qq.com;398552705@qq.com

Abstract:

A series of hydrothermal cobalt polymetallic deposits in northeastern Hunan Province occurr along the Changsha-Pingjiang fault zone,the middle section of the Jiangnan orogen belt. These deposits are hosted in the tectonic-hydrothermal alteration belt at the footwall of the Changsha-Pingjiang fault zone,and controlled by the fault zone and its secondary structures.However,the occurrence state of cobalt and cobalt-containing minerals in the whole belt isn’t sufficient,which restricts the understanding of the metallogenic process of cobalt in the belt.The detailed mineralogical observation,TIMA analysis and EPMA showed that the pyrite is the main sulfide and also an important cobalt-containing mineral in the Hengdong deposit.It exhibits a complex textural characteristics,that is,the cobalt-rich pyrite with silk-shaped,ring-shaped or irregularly at the edge replaced by the cobalt-poor pyrite at the core.The cobalt-rich pyrite has a clear oscillating zone exhibits high Co (up to 3.52%) but low Ni contents (≤0.09%). The complex zoning indicated that fluid-coupled dissolution and precipitation mechanism was responsible for the formation of Co-rich pyrite. In comparison,cobaltite ore is the most important cobalt-bearing mineral in the Jintang cobalt polymetallic deposit,which is closely related to pyrite,marcasite,and arsenopyrite,and occurs as an isolated granular form or wrapped in arsenopyrite particles.The particle size of cobaltite is between 3 μm and 45 μm. The contents of Co,Fe,and Ni of cobalt vary from 9.51% to 23.21%(average is 15.50%),4.33% to 17.66%(average is 9.46%),and 5.52% to 15.24%(average is 9.31%),respectively.Combied with the occurrence form of cobalt in the Jingchong cobalt-copper polymetallic deposit,it could be concluded that the cobalt-containing minerals vary from cobaltite to pyrite along the Changsha-Pingjiang fault zone from southwest to northeast.Furthermore,the Co contents in cobaltite increases tend to while Ni contents decreases,and the high content of Co in pyrite decreases.The mineralizing disparity could be explained by controlling factors such as ore-forming fluid migration direction and physical-chemical conditions(e.g.,pH value and fS2). Combined with Co(-polymetallic) orebodies controlled by the NE-trending Changsha-Pingjiang deep fault zone,it was proposed that the southwestern part of the deep fault in Lianyunshan area would be the focus of next cobalt exploration in northeastern Hunan Province.

Key words: pyrite, arsenopyrite cobalt ore, TIMA analysis, hydrothermal cobalt deposit, Jintang mining area, Hengdong mining area, northeastern Hunan

CLC Number: 

  • P618.51

Fig.1

Regional geological map and mineral distribution map of northeastern Hunan Province(modified after Xu et al.,2009)"

Fig.2

Geological map of the Hengdong cobalt deposit(modified after Zou et al.,2018)"

Fig.3

Characteristics of different types of cobalt ores in northestern Hunan Province"

Fig.4

Geological map of the Jintang cobalt polymetallic deposit"

Fig.5

Microscopic characteristics of cobalt-bearing sulfides in different types of cobalt deposits"

Fig.6

TIMA images of cobalt ore in Jintang mining area and particle size statistics of cobaltite"

Table 1

EPMA results of pyrite from the Hengdong deposit(%)"

分析点号SFeCoNiAsSeSbPb总计
D0151.7747.900.250.010.260.100.020.0399.93
D0252.1747.650.470.090.120.03-0.01100.38
D0352.0544.362.980.010.330.030.020.0199.40
D0451.9944.522.55-0.240.030.070.0199.07
D0551.3346.181.92-0.250.110.010.0199.43
D0652.3943.793.41-0.330.140.020.0199.59
D0752.7844.991.720.080.260.010.010.0199.57
D0852.6146.980.200.020.190.020.01-99.81
D0953.6042.832.890.010.240.200.040.0199.33
D1052.7444.261.79-0.270.02--98.79
D1153.0243.912.890.010.28---99.83
D1252.3346.880.120.010.27-0.01-99.35
D1353.2742.893.52-0.190.020.02-99.68
D1453.9242.632.95-0.34-0.030.0199.49
D1552.1444.292.700.030.26-0.010.0199.16
D1652.7544.122.560.010.270.010.01-99.45
D1752.8244.372.67-0.320.01-0.0199.86

Fig.7

Chemical composition diagram of cobalt-bearing minerals"

Table 2

EPMA results of cobaltite from the Jintang cobalt polymetallic deposit (%)"

分析点号SFeCoNiAsSb总计化学式
D0118.904.3323.218.7045.130.18100.45(Fe0.13Co0.64Ni0.24)As0.97S0.95
D0219.656.5418.4611.3343.540.1299.64(Fe0.19Co0.50Ni0.31)As0.93S0.98
D0321.007.4615.519.7444.69-98.40(Fe0.23Co0.48Ni0.29)As1.08S1.19
D0421.2114.2112.126.1246.04-99.69(Fe0.45Co0.36Ni0.18)As1.09S1.17
D0520.7217.669.515.5245.90-99.31(Fe0.55Co0.28Ni0.16)As1.07S1.13
D0621.8314.9410.576.8645.52-99.72(Fe0.47Co0.32Ni0.21)As1.08S1.21
D0722.449.2716.985.9144.35-98.94(Fe0.30Co0.52Ni0.18)As1.07S1.26
D0819.716.8514.4015.2444.520.08100.80(Fe0.20Co0.39Ni0.41)As0.97S0.98
D0919.958.8519.697.7044.100.31100.60(Fe0.25Co0.54Ni0.21)As0.98S1.00
D1020.167.1014.0413.7643.600.1498.81(Fe0.21Co0.40Ni0.39)As0.95S1.05
D1120.058.2916.2110.4244.330.1699.45(Fe0.25Co0.46Ni0.30)As0.98S1.04
D1220.008.0315.3410.4344.730.1298.64(Fe0.25Co0.45Ni0.31)As1.00S1.07

Fig.8

BSE and wave spectrum map scanning images of pyrite by EPMA in Hengdong deposit"

Ahmed A H, Arai S, Ikenne M,2009.Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer,Anti-Atlas,Morocco[J].Economic Geology,104(2):249-266.
Al-Khirbash S,2015.Genesis and mineralogical classification of Ni-laterites,Oman Mountains[J].Ore Geology Reviews,65:199-212.
Bajwah Z U, Seccombe P K, Offler R,1987.Trace element distribution,Co∶Ni ratios and genesis of the Big Cadia iron-copper deposit,New South Wales,Australia[J].Mineralium Deposita,22(4):292-300.
Borg S, Liu W, Pearce M,et al,2014.Complex mineral zoning patterns caused by ultra-local equilibrium at reaction interfaces[J].Geology,42:415-418.
Bralia A, Sabatini G, Troja F,1979.A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J].Mineralium Deposita,14(3):353-374.
Burisch M, Gerdes A, Walter B F,et al,2017. Methane and the origin of five-element veins:Mineralogy,age,fluid inclusion chemistry and ore forming processes in the Odenwald,SW Germany[J].Ore Geology Reviews,81:42-61.
Burisch M, Michael A W, Nowak M,et al,2016.The effect of temperature and cataclastic deformation on the composition of upper crustal fluids—An experimental approach[J].Chemical Geology,433:24-35.
Chen Qian, Song Wenlei, Yang Jinkun,et al,2021. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy:An example from TESCAN TIMA [J]. Mineral Deposits,40(2):345-368.
Deng T, Xu D R, Chi G X,et al,2017.Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China[J].Ore Geology Reviews,88:619-637.
Dill H G, Botz R,1989.Lithofacies variation and unconformities in the metalliferous rocks underlying the Permian Kupferschiefer of the Stockheim Basin,Federal Republic of Germany[J].Economic Geology,84(5):1028-1046.
El Desouky H A, Muchez P, Cailteux J,2009.Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga copper belt,Democratic Republic of Congo[J].Ore Geology Reviews,36(4):315-332.
En-Naciri A, Barbanson L, Touray J C,1997.Brine inclusions from the Co-As (Au) Bou Azzer district,Anti-Atlas Mountains,Morocco[J].Economic Geology,92(3):360-367.
Feng Chengyou, Zhang Dequan, Dang Xingyan,2004.Cobalt resources of China and their exploitation and utilization[J].Mineral Deposits,93(1):93-100.
Feng Chengyou, Zhang Dequan, She Hongquan,et al,2006.Tectonic setting and metallogenic mechanism of Tuolugou cobalt(gold)deposit Qinghai Province[J].Mineral Deposits,25(5):544-561.
Gao Linzhi, Chen Jun, Ding Xiaozhong,et al,2011.Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi groups,northeastern Hunan:Constraints on the Wuling Movement[J].Geological Bulletin of China,30(7):1001-1008.
Guilcher M, Schmaucks A, Krause J,et al,2021.Vertical zoning in hydrothermal U-Ag-Bi-Co-Ni-As systems:A case study from the Annaberg-Buchholz district,Erzgebirge (Germany)[J].Economic Geology,116(8):1893-1915.
Ji W B, Lin W, Faure M,et al,2017.Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan Province (middle Yangtze region),South China:Geodynamic implications for the Paleo-Pacific subduction[J].Journal of Asian Earth Sciences,141:174-193.
Jiang Shaoyong, Wen Hanjie, Xu Cheng,et al,2019.Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China,33(2):112-118.
Jiao Jiangang, Huang Xifeng, Yuan Haichao,et al,2009.Progress in the research of Deʾerni Cu(Co) ore deposit[J].Journal of Earth Sciences and Environment,31(1):42-47.
Markl G, Burisch M, Neumann U,2016.Natural fracking and the genesis of five-element veins[J].Mineralium Deposita,51(6):703-712.
Ning Juntao,2002.Analysis on metallogenic geologic conditions of original Co-deposits in northeast Hunan[J].Hunan Geology,21(3):192-200.
Putnis A,2009.Mineral replacement reactions[J].Reviews in Mineralogy and Geochemistry,70(1):87-124.
Qiu Z J, Fan H R, Goldfarb R,et al,2021.Cobalt concentration in a sulfidic sea and mobilization during orogenesis:Implications for targeting epigenetic sediment-hosted Cu-Co deposits[J].Geochimica et Cosmochimica Acta,305:1-18.
Saintilan N J, Creaser R A, Bookstrom A A,2017.Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt,Belt-Purcell Basin,USA:Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization[J].Ore Geology Reviews,86:509-525.
Scharrer M, Epp T, Walter B,et al,2022.The formation of (Ni-Co-Sb)-Ag-As ore shoots in hydrothermal galena-sphalerite-fluorite veins[J].Mineralium Deposita,57(5):853-885.
Scharrer M, Kreissl S, Markl G,2019.The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic[J].Ore Geology Reviews,113:103025.
Slack J F,2012.Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt:Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system[J].Economic Geology,107(6):1089-1113.
Vasyukova O V, Williams-Jones A E,2022.Constraints on the genesis of cobalt deposits:Part II.Applications to natural systems[J].Economic Geology,117(3):529-544.
Wang Denghong,2019.Study on critical mineral resources:Significance of research,determination of types,attributes of resources,progress of prospecting,problems of utilization,and direction of exploitation[J].Acta Geologica Sinica,93(6):1189-1209.
Wang J Q, Shu L S, Santosh M,2016.Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen[J].Gondwana Research,39:114-130.
Wang Yan, Zhong Hong, Cao Yonghua,et al,2020. Genetic classification,distribution and ore genesis of major PGE,Co and Cr deposits in China:A critical review[J].Chinese Science Bulletin,65(33):3825-3838.
Wang Z L, Wang Y F, Peng E K,et al,2022.Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu polymetallic deposit,South China[J].Ore Geology Reviews,142:104721.
Wang Zhilin, Wu Yang, Xu Deru,et al,2020.Occurrence state and ore-forming regularity of critical metal cobalt in the Changsha-Pingjiang fault zone,northeastern Hunan Province[J].Gold Science and Technology,28(6):779-785.
Wang Z L, Xu D R, Chi G X,et al,2017.Mineralogical and isotopic constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province,South China[J].Ore Geology Reviews,88:638-654.
Wang Z L, Xu D R, Zhang Z C,et al,2015.Mineralogy and trace element geochemistry of the Co-and Cu-bearing sulfides from the Shilu Fe-Co-Cu ore district in Hainan Province of South China[J].Journal of Asian Earth Sciences,113:980-997.
Williams-Jones A E, Vasyukova O V,2022.Constraints on the genesis of cobalt deposits:Part I. Theoretical considerations[J].Economic Geology,117(3):513-528.
Xiong Y Q, Jiang S Y, Wen C H,et al,2020.Granite-pegmatite connection and mineralization age of the giant Renli TaNb deposit in South China:Constraints from U-Th-Pb geochronology of coltan,monazite,and zircon[J].Lithos,358:105422.
Xu D R, Deng T, Chi G X,et al,2017.Gold mineralization in the Jiangnan Orogenic Belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting[J].Ore Geology Reviews,88:565-618.
Xu D R, Gu X X, Li P C,et al,2007.Mesoproterozoic-Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China[J].Journal of Asian Earth Sciences,29(5):637-650.
Xu Deru, Wang Li, Li Pengchun,et al,2009.Petrogenesis of the Lianyunshan granites in northeastern Hunan Province,South China,and its geodynamic implications[J].Acta Petrologica Sinica,25(5):1056-1078.
Xu Deru, Wang Zhilin, Nie Fengjun,et al,2019. Cobalt resources in China:Current research status and key scientific issues[J].Bulletin of National Natural Science Foundation of China,33(2):125-132.
Yan Lei, Fan Yu, Liu Yinan,2021.The occurrence and spatial distribution of cobalt in Longqiao iron deposit in Luzong Basin,Anhui Province[J].Acta Petrologica Sinica,37(9):2778-2790.
Yuan S D, Mao J W, Zhao P L,et al,2018.Geochronology and petrogenesis of the Qibaoshan Cu-polymetallic deposit,northeastern Hunan Province:Implications for the metal source and metallogenic evolution of the intracontinental Qinhang Cu-polymetallic belt,South China[J].Lithos,302:519-534.
Zhai Mingguo, Wu Fuyuan, Hu Ruizhong,et al,2019. Critical metal mineral resources:Current research status and scientific issues[J].Bulletin of National Natural Science Foundation of China,33 (2):106-111.
Zhang Aikui, Wang Jianjun, Liu Guanglian,et al,2021.Main minerogenetic series in the Qimantag area,Qinghai Province and their metallogenic models[J]. Acta Mineralogica Sinica,41(1):1-22.
Zhang L, Yang L Q, Groves D I,et al,2018.Geological and isotopic constraints on ore genesis,Huangjindong gold deposit,Jiangnan Orogen,southern China[J].Ore Geology Reviews,99:264-281.
Zhang Wenshan,1991. Structural and geochemical features of Changsha-Pingjiang fracture dynamic metamorphism zone in NE Hunan Province,China[J].Geotectonica et Metallogenica,2:100-109.
Zhao Junxing, Li Guangming, Qin Kezhang,et al,2019.A review of the types and ore mechanism of the cobalt deposits[J].Chinese Science Bulletin,64(24):2484-2500.
Zhou Yueqiang, Kang Bo,2017.Research on the characteristics of ore-forming fluids of Jingchong copper-cobalt polymetallic deposit in Hunan Province[J].Bulletin of Mineralogy,Petrology and Geochemistry,36(Supp.):836.
Zhou Y Q, Xu D R, Dong G J,et al,2021.The role of structural reactivation for gold mineralization in northeastern Hunan Province,South China[J].Journal of Structural Geology,145:104306.
Zhou Yueqiang, Xu Deru, Dong Guojun,et al,2019.Structural evolution of the Changsha-Pingjiang fault zone and its controlling on mineralization[J].Journal of East China University of Technology (Natural Science),42(3):201-208.
Zou S H, Zou F H, Ning J T,et al,2018.A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,92:42-60.
陈倩,宋文磊,杨金昆,等,2021.矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J].矿床地质,40(2):345-368.
丰成友,张德全,党兴彦,2004.中国钴资源及其开发利用概况[J].矿床地质,93(1):93-100.
丰成友,张德全,佘宏全,等,2006.青海驼路沟钴(金)矿床形成的构造环境及钴富集成矿机制[J].矿床地质,25(5):544-561.
高林志,陈峻,丁孝忠,等,2011.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约[J].地质通报,30(7):1001-1008.
蒋少涌,温汉捷,许成,等,2019.关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J].中国科学基金,33(2):112-118.
焦建刚,黄喜峰,袁海潮,等,2009.青海德尔尼铜(钴)矿床研究新进展[J].地球科学与环境学报,31(1):42-47.
宁钧陶,2002.湘东北原生钴矿成矿地质条件分析[J].湖南地质,21(3):192-200.
王登红,2019.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报,93(6):1189-1209.
王焰,钟宏,曹勇华,等,2020.我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J].科学通报,65(33):3825-3838.
王智琳,伍杨,许德如,等,2020.湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J].黄金科学技术,28(6):779-785.
许德如,王力,李鹏春,等,2009.湘东北地区连云山花岗岩的成因及地球动力学暗示[J].岩石学报,25(5):1056-1078.
许德如,王智琳,聂逢君,等,2019.中国钴矿资源现状与关键科学问题[J].中国科学基金,33(2):125-132.
阎磊,范裕,刘一男,2021.安徽庐枞盆地龙桥铁矿床中钴的赋存状态和空间分布规律[J].岩石学报,37(9):2778-2796.
翟明国,吴福元,胡瑞忠,等,2019.战略性关键金属矿产资源:现状与问题[J].中国科学基金,33(2):106-111.
张爱奎,王建军,刘光莲,等,2021.青海省祁漫塔格地区主要成矿系列与成矿模式[J].矿物学报,41(1):1-22.
张文山,1991.湘东北长沙—平江断裂动力变质带的构造及地球化学特征[J].大地构造与成矿学,2:100-109.
赵俊兴,李光明,秦克章,等,2019.富含钴矿床研究进展与问题分析[J].科学通报,64(24):2484-2500.
周岳强,康博,2017.湖南省井冲铜钴多金属矿床成矿流体特征研究[J].矿物岩石地球化学通报,36(增):836.
周岳强,许德如,董国军,等,2019.湖南长沙—平江断裂带构造演化及其控矿作用[J].东华理工大学学报(自然科学版),42(3):201-208.
[1] Zhilin WANG,Kai ZHANG,Deru XU,Shaohao ZOU,Yufei WANG. Mineralogical Fingerprints of Co Metallogenesis in the Tuolugou Deposit,East Kunlun Orogen [J]. Gold Science and Technology, 2023, 31(2): 175-189.
[2] Xiaoni CUN,Yushan XUE,Yuliang WANG,Xinwei LIU. Typomorphic Characteristics and Prospecting Significance of Pyrite in Longtougou Gold Deposit,Shaanxi Province [J]. Gold Science and Technology, 2023, 31(1): 64-77.
[3] Shengwei ZHANG,Teng DENG,Deru XU,Yueqiang ZHOU,Guojun DONG,Zenghua LI,Wen MA,Ke XU,Yan HAI. Genesis of Carbonaceous Material in the Wangu Gold Deposit and Its Relationship with Gold Mineralization [J]. Gold Science and Technology, 2022, 30(6): 835-847.
[4] Tai’an WAN,Deru XU,Wen MA,Shengwei ZHANG,Guojian WANG,Yubing BIAN,Bo LI. Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold Deposit,Northeast Hunan and Its Implication to Gold Mineralization Mechanism [J]. Gold Science and Technology, 2022, 30(5): 676-690.
[5] Zhen CHEN, Cuizhi WANG, Guxian LV, Baolin ZHANG, Qipeng ZHANG, Junbin WEI, Xiaoming SHI. Typomorphic Characteristics of Chemical Composition of Pyrite in Chaihu-lanzi Gold Deposit and Its Mineralogy Significance [J]. Gold Science and Technology, 2022, 30(2): 165-178.
[6] Gaizhong LIANG,Kuifeng YANG,Hongrui FAN,Xinghui LI. Genesis of Colloidal Pyrite and Its Metallogenic Significance in Asiha Gold Deposit,East Kunlun [J]. Gold Science and Technology, 2022, 30(1): 19-33.
[7] Zhilin WANG,Yang WU,Deru XU,Shaohao ZOU,Guojun DONG,Erke PENG,Juntao NING,Bo KANG. Occurrence State and Ore-forming Regularity of Critical Metal Cobalt in the Changsha-Pingjiang Fault Zone,Northeastern Hunan Province [J]. Gold Science and Technology, 2020, 28(6): 779-785.
[8] Jiawei WEN,Pengliang SHI,Yanbing LIU,Jing ZHANG,Hailang QU,Yuanshen LI,Boxin HU,Guang MIAO. Thermoelectric Characteristics of Pyrite and Deep Prospecting Prediction in Erdaogou Gold Deposit, Liaoning Province [J]. Gold Science and Technology, 2020, 28(6): 812-824.
[9] Hua GAO, Yuhua XIE, Liang YANG, Zhe ZHANG, Xinxing KE, Xiaomin LIU, Jianbiao LUO, Qi LIU, Jishun LIU, Zhilin WANG, Hua KONG. Composition Typomorphic Characteristics of Pyrite and Its Genetic Implication for Gold Deposits in Tongdao County,Hunan Province [J]. Gold Science and Technology, 2020, 28(5): 712-726.
[10] Gang CHEN, Maohong CHEN, Kezhong MA, Rui GE, Shenxiang GUO, Qiqiang WU, Qisheng YUAN. Genetic Types and Prospecting Significance of Liumei Gold Deposit,Guigang,Guangxi Province,China [J]. Gold Science and Technology, 2020, 28(4): 479-496.
[11] Zhen ZHANG, Shengyuan NING, Zengtian XU. Mineralogy of Gold-bearing Pyrite and Its Significance for Deep Prospecting in the Jiuqu Gold Deposit,Linglong Area,Jiaodong Peninsula [J]. Gold Science and Technology, 2020, 28(3): 328-336.
[12] Yumin CHEN, Huafeng ZHANG, Congying ZHANG, Huanlong HU, Zhaokun WANG, Qingdong ZENG, Hongrui FAN. Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula [J]. Gold Science and Technology, 2019, 27(5): 637-647.
[13] Qingwei LUO,Baoguo WANG,Aiwen YI,Kechuan ZHANG,Ze PAN,Shengya ZHANG. Typomorphic Characters and Significance of Pyrite in a Greenstone Belt Type Gold Deposit in Tanzania [J]. Gold Science and Technology, 2019, 27(1): 15-24.
[14] Wenqiang ZHAO,Chuanjin JIANG,Baobao SHI. Optimization Study on the Sulfur Separation Process for Cyanide Tailing [J]. Gold Science and Technology, 2019, 27(1): 129-136.
[15] Yanhua LIU,Guobao CHEN,Hongying YANG,Zhenan JIN,Gairong WANG. Research on Mechanical Activation Properties and Leaching Test of Arseno-pyrite [J]. Gold Science and Technology, 2018, 26(5): 669-676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Qi, WANG Rong-Chao. [J]. J4, 2010, 18(4): 37 -40 .
[2] LI Hong-Jie, CU Jing-Ji, MA Shu-Jiang. [J]. J4, 2010, 18(4): 41 -46 .
[3] CHEN Hua-Dun. [J]. J4, 2010, 18(4): 50 -53 .
[4] LIU Shu-Lin, SU Jian-Hua. [J]. J4, 2010, 18(4): 71 -74 .
[5] YI Cun-Chang, CANG En-Guang. [J]. J4, 2010, 18(4): 58 -61 .
[6] LIU Jin-Feng, LIU Mo-Jiang, LI Ding-Kun, LI Tian-Dong. [J]. J4, 2010, 18(4): 80 -81 .
[7] HU Qin-Xia, CHEN Kai, CHEN Chao, ZHANG Ku-Xiao. Analysis on Geological Features and Metallogenic Regularities of Nacheng Silver Gold Deposit in Guangdong[J]. J4, 2011, 19(1): 16 -20 .
[8] BAI Bi-Xin, WANG Shan-Gong, AN Zhi-Hai. Research and Application of Underground Mining Exploiting 3D Visualization System in Xinhui Gold Mine[J]. J4, 2011, 19(1): 55 -57 .
[9] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[10] LIU Xin-Hui, LIU Jia-Jun, CHEN Cai-Hua. [J]. J4, 2010, 18(4): 6 -11 .