img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (6): 835-847.doi: 10.11872/j.issn.1005-2518.2022.05.186

• Mineral Exploration and Resource Evaluation • Previous Articles    

Genesis of Carbonaceous Material in the Wangu Gold Deposit and Its Relationship with Gold Mineralization

Shengwei ZHANG1,2(),Teng DENG1,2(),Deru XU1,2,3(),Yueqiang ZHOU4,Guojun DONG4,Zenghua LI1,2,Wen MA1,2,Ke XU1,2,Yan HAI1,2   

  1. 1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
    2.School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China
    3.Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China
    4.No. 402 Geological Party, Bureau of Geology and Mineral Resources Exploration and Development of Hunan Province, Changsha 410014, Hunan, China
  • Received:2021-11-30 Revised:2022-03-02 Online:2022-12-31 Published:2023-01-06
  • Contact: Teng DENG,Deru XU E-mail:shengweizhang52@gmail.com;dengteng2015@gmail.com;xuderu@gig.ac.cn

Abstract:

The Wangu gold deposit,located in the central Jiangnan orogenic belt,is one of the most repre-sentative gold deposits.The orebodies are mainly hosted in the Neoproterozoic Lengjiaxi Group.Large amounts of carbonaceous material(CM) occurs in the host rocks and ores.However,the types and genesis of CM in the deposit and its relationship with gold mineralization are still unclear,which restricts the understanding of the precipitation mechanism of mineralization elements and the deep prospecting and exploration work. Systematic petrographic and laser Raman spectroscopic analyses of CM in surrounding rocks and ores show that there are three types of CM in the deposit,namely CM1,CM2 and CM3.Among them,CM1(T=507~613 ℃) is granular with small particles,which are distributed in quartz and micamineral particles or pores,in disseminated distribution,smooth edges and corners and good roundness,which may be the source of debris.CM2(T=390~470 ℃) is layered and distributed around minerals such aspyrite and arsenopyrite or in pyrite.CM3(T=240~355 ℃) coexists with hydrothermal minerals such as siderite,quartz and pyrite,and the formation temperature is close to the metallogenic temperature,surrounded by a large amount of pyrite,which is mainly produced in vein form.Consequently,CM1 and CM2 may have been formed by pre-ore metamorphism,which is of metamorphic origin,while CM3 may be the product of hydrothermal process,which is of hydrothermal origin.Sulfide LA-ICP-MS Mapping and trace element analyses show that the Au-As coupling phenomenon of sulfide in CM2 is wonderful.The pyrite rim is more enriched in Au,As,Co and Ni than the core,and poor in Bi,Pb,and Sb.In the vicinity of pores in the core of pyrite,most of them have abnormally high Au.The location of abnormally high Au,As,Co,and Ni is very similar,forming a growth ring of pyrite.The pyrite grains associated with both CM2 and CM3 contain gold,but those related to CM2 are richer in Au and As,and poor in trace elements such as Cu,Co,Ni,Bi,Pb.The sulfide of CM2 have no Te,however,the content of CM3 are less.Combining with previous studies,pre-ore layer CM2 can react with Au-bearing fluid as efficient reductant to prompt Au precipitation.However,hydrothermal CM3 together with pyrite precipitating from ore-bearing fluid,was also favorable to gold mineralization.

Key words: carbonaceous material(CM), Raman spectra, orogenic gold deposits, sulfide LA-ICP-MS Mapping, pyrite, Wangu gold deposit, Jiangnan orogenic belt

CLC Number: 

  • P618.51

Fig.1

Regional geological map of northeastern Hunan Province(modified after Deng et al.,2020)"

Fig.2

Geological map of the Wangu gold deposit (modified after Mao et al.,1997)"

Fig.3

Cross section of the Wangu gold deposit (modified after Mao et al.,1997)"

Fig.4

Field,hand specimen,scanning electron microscope and micrograph of Wangu gold deposit"

Fig.5

Raman spectrum analysis of different types of CM"

Table 1

Raman spectral parameter characteristics of different types of CM"

CM 类型样品ID

D1 峰

/cm-1

D1 峰面百

分比/%

G 峰/cm-1

G 峰面百

分比/%

D2 峰

/cm-1

D2 峰面百

分比/%

R1R2T/℃
Beysac方法Rahl方法
CM1A-1279.9316.021 876.1679.81128.764.170.150.16569.72612.48
A-2387.4722.542 180.1368.81218.718.650.180.23540.70551.29
A-3663.2123.443 845.8968.33393.848.220.170.23536.67540.10
A-4100.5126.59498.1666.1448.777.260.200.27522.66515.02
A-5696.3729.302 494.1063.97340.136.730.280.29510.61507.98
CM2B-1306.3739.39562.8453.83110.936.780.540.39465.70467.84
B-2216.1238.52502.6855.6475.345.840.430.39469.59449.40
B-3261.8848.37328.3144.3981.657.240.800.48425.75426.03
B-443.6248.7856.4816.8243.9034.400.770.49423.93416.72
B-5148.8956.15138.0737.9232.915.931.080.56391.13390.77
CM3C-12 911.9665.561 628.8533.30164.861.151.790.66349.28354.67
C-2391.2769.13166.3529.3730.431.502.350.69333.39309.90
C-3226.1670.89108.8427.9817.021.142.080.71325.56300.77
C-4124.3169.9652.5628.3610.421.682.370.70329.69300.29
C-5512.7575.11210.6821.9264.382.972.430.75306.75240.82

Fig.6

LA-ICP-MS mapping of sulfide in CM2"

Fig.7

LA-ICP-MS Mapping of sulfide in CM3"

Fig.8

Comparison of trace element concentrations of sulfides in different types of CMCO2+CH4=2C+2H2O (5)"

Table 2

LA-ICP-MS trace element analysis results of pyrite in different types of CM(×10-6)"

CM类型编号矿物AuAsSeCoNiCuSbTePbBiCo/Ni
CM22-1Py31.5648386.85-75.86165.25117.5063.88-67.760.490.46
2-2Py27.3536730.261.03162.38927.5944.0986.25-253.471.850.18
2-3Py40.2438000.63-253.36601.6130.7161.51-60.030.550.42
2-4Py34.2235014.360.8710.0079.1063.5882.53-36.980.100.13
2-5Py9.4029676.760.783.0435.2511.3235.41-38.560.090.09
CM33-1Py0.831846.1833.783013.17482.07241.14519.9017.871381.0623.956.25
3-2Py0.954223.6946.25786.321186.64194.92379.2510.451278.5411.960.66
3-3Py1.162061.7338.10517.69640.46173.19327.439.53973.7312.460.81
3-4Py0.52112.8621.8918.6723.24256.41287.11-673.515.470.80
3-5Py0.56141.1520.95158.32129.73206.05302.971.32982.055.891.22
检测限0.032.070.680.650.370.350.240.140.0020.02
Beny-Bassez C, Rouzaud J N,1985.Characterization of carbonaceous materials by correlated electron and optical microscopy and raman microspectroscopy[J].Scanning Ele-ctron Microscopy,(1):119-132.
Berner R A,1985.Sulphate reduction,organic matter decomposition and pyrite formation[J].Philosophical Transactions of the Royal Society of London(Series A,Mathematical and Physical Sciences),315(1531):25-38.
Beyssac O, Goffé B, Chopin C,et al,2002a.Raman spectra of carbonaceous material in metasediments:A new geothermometer[J].Journal of Metamorphic Geology,20(9):859-871.
Beyssac O, Rouzaud J N, Goffé B,et al,2002b.Graphitization in a high-pressure,low-temperature metamorphic gradient:A raman microspectroscopy and HRTEM study[J].Contributions to Mineralogy and Petrology,143(1):19-31.
Charvet J, Shu L, Shi Y,et al,1996.The building of south China:Collision of Yangzi and Cathaysia blocks,problems and tentative answers[J].Journal of Southeast Asian Earth Sciences,13(3/4/5):223-235.
Chen Zhenya, Chen Yuanlin, Gu Shangyi,et al,2019.Study on metallogenic relations of carboniferous quartz veins in orogenic gold deposits in southwest margin of Jiangnan Orogenic Belt[J].Mineral Exploration,10(4):870-879.
Cox S F,1995.Faulting processes at high fluid pressures:An example of fault valve behavior from the Wattle Gully Fault,Victoria,Australia[J].Journal of Geophysical Research:Solid Earth,100(B7):12841-12859.
Craw D,2002.Geochemistry of late metamorphic hydrothermal alteration and graphitisation of host rock,Macraes gold mine,Otago Schist,New Zealand[J].Chemical Geology,191(4):257-275.
Craw D, Mortensen J, MacKenzie D,et al,2015.Contrasting geochemistry of orogenic gold deposits in Yukon,Canada and Otago,New Zealand[J].Geochemistry:Exploration,Environment,Analysis,15(2/3):150-166.
Cui N, Sun L, Bagas L,et al,2017.Geological characteristics and analysis of known and undiscovered graphite resources of China[J].Ore Geology Reviews,91:1119-1129.
Deng T, Xu D R, Chi G X,et al,2017.Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China[J].Ore Geology Reviews,88:619-637.
Deng T, Xu D R, Chi G X,et al,2020.Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China[J].Ore Geology Reviews,124:103586.
Ding Z, Deng T, Xu D,et al,2020.Genesis of two types of carbonaceous material associated with gold mineralization in the Bumo deposit,Hainan Province,South China[J].Minerals,10(8):708.
Fu Zhaoren, Li Zijin, Zheng Dayu,1999.Tectonic development style of NNE strike slip orogenic belt in Hunan Jiangxi border area[J].Earth Science Frontiers,(4):263-272.
Gaboury D,2021.The neglected involvement of organic matter in forming large and rich hydrothermal orogenic gold deposits[J].Geosciences,11(8):344.
Gan C, Wang Y, Barry T L,et al,2020.Late Jurassic high-Mg andesites in the Youjiang Basin and their significance for the southward continuation of the Jiangnan Orogen,South China[J].Gondwana Research,77:260-273.
Groves D I, Goldfarb R J, Robert F,et al,2003.Gold deposits in metamorphic belts:Overview of current understanding,outstanding problems,future research,and exploration significance[J].Economic Geology,98(1):1-29.
Guan Y, Yuan C, Sun M,et al,2014.I-type granitoids in the eas-tern Yangtze Block:Implications for the Early Paleozoic intracontinental orogeny in South China[J].Lithos,206:34-51.
Hu S Y, Evans K, Craw D,et al,2017.Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits[J].Geology,45(2):167-170.
Hu S, Evans K, Craw D,et al,2015.Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks,New Zealand[J].Ore Geology Reviews,70:80-95.
Kříbek B, Sýkorová I, Machovič V,et al,2015.The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa[J].Precambrian Research,270:300-317.
Lehmann B, Nägler T F, Holland H D,et al,2007.Highly metalliferous carbonaceous shale and Early Cambrian seawater[J].Geology,35(5):403-406.
Leventhal J S, Grauch R I, Threlkeld C N,et al,1987.Unusual organic matter associated with uranium from the Claude deposit,Cluff Lake,Canada[J].Economic Geology,82(5):1169-1176.
Lewan M D, Bjorøy M, Dolcater D L,1986.Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale[J].Geochimica et Cosmochimica Acta,50(9):1977-1987.
Li H, Wu Q H, Evans N J,et al,2018.Geochemistry and geochronology of the Banxi Sb deposit:Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan,South China[J].Gondwana Research,55:112-134.
Liu Qinfu, Yuan Liang, Li Kuo,et al,2018.Structural characteristics of different metamorphic grade coal-based graphite[J].Earth Science,43(5):1663-1669.
Lu Huanzhang, Chi Guoxiang, Zhu Xiaoqing,et al,2018.Geological characteristics and ore forming fluids of orogenic gold deposits[J].Geotectonica et Metallogenia,42(2):244-265.
Ma W, Deng T, Xu D R,et al,2021.Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan Orogenic Belt and implications for gold mineralization[J].Ore Geology Reviews,139:1-16.DOI:10.1016/j.oregeorev.2021.104479 .
doi: 10.1016/j.oregeorev.2021.104479
Mao Jingwen, Li Hongyan,1997.Research on genesis of the gold deposits in the Jiangnan terrain[J].Geochimica,(5):71-81.
McKeag S A, Craw D, Norris R J,1989.Origin and deposition of a graphitic schist-hosted metamorphogenic Au-W deposit,Macraes,East Otago,New Zealand[J].Mineralium Deposita,24(2):124-131.
Mirasol-Robert A, Grotheer H, Bourdet J,et al,2017.Evidence and origin of different types of sedimentary organic matter from a Paleoproterozoic orogenic Au deposit[J].Precambrian Research,299:319-338.
Mossman D J,1999.Carbonaceous substances in mineral deposits:Implications for geochemical exploration[J].Journal of Geochemical Exploration,66(1/2):241-247.
Pirajno F, Bagas L,2002.Gold and silver metallogeny of the South China Fold Belt:A consequence of multiple mineralizing events?[J].Ore Geology Reviews,20(3/4):109-126.
Rahl J M, Anderson K M, Brandon M T,et al,2005.Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks:calibration and application to tectonic exhumation in Crete,Greece[J].Earth and Planetary Science Letters,240(2):339-354.
Razvozzhaeva E A, Nemerov V K, Spiridonov A M,et al,2008.Carbonaceous substance of the Sukhoi Log gold deposit (East Siberia)[J].Russian Geology and Geophysics,49(6):371-377.
Reich M, Kesler S E, Utsunomiya S,et al,2005.Solubility of gold in arsenian pyrite[J].Geochimica et Cosmochimica Acta,69(11):2781-2796.
Teichmüller M,1986.Organic petrology of source rocks,history and state of the art[J].Organic Geochemistry,10(1/2/3):581-599.
Wang C, Shao Y, Evans N J,et al,2020.Genesis of Zixi gold deposit in Xuefengshan,Jiangnan Orogen (South China):Age,geology and isotopic constraints[J].Ore Geology Reviews,117:103301.
Wang J Q, Shu L S, Santosh M,2016.Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen[J].Gondwana Research,39:114-130.
Wang Qingfei, Deng Jun, Zhao Hesen,et al,2019.Review on orogenic gold deposits[J].Earth Science,44(6):2155-2186.
Wang Yitian, Liu Junchen, Mao Jingwen,2020.Metallogenic characteristics and conditions of 3 main types of gold deposits and their exploration significances[J].Gold,41(9):12-21.
Wen Zhilin, Deng Teng, Dong Guojun,et al,2016.Characteristics of ore-controlling structures of Wangu gold deposit in northeast Hunan Province[J].Geotectonica et Metallogenia,40(2):281-294.
Wu Y F, Evans K, Fisher L A,et al,2020.Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system[J].Geochimica et Cosmochimica Acta,276:345-362.
Wu Y F, Li J W, Evans K,et al,2018.Ore-forming processes of the Daqiao epizonal orogenic gold deposit,West Qinling orogen,China:Constraints from textures,trace elements,and sulfur isotopes of pyrite and marcasite,and raman spectroscopy of carbonaceous material[J].Economic Geology,113(5):1093-1132.
Xiao Yongjun, Chen Guanghao,2004.Preliminary study on the tectono-metallogenic orientation mechanism of the Dadong-Wangu gold deposit zone,northeastern Hunan Province[J].Geotectonica et Metallogenia,(1):38-44.
Xu D R, Deng T, Chi G X,et al,2017.Gold mineralization in the Jiangnan Orogenic Belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting[J].Ore Geology Reviews,88:565-618.
Xu D R, Gu X X, Li P C,et al,2007.Mesoproterozoic-Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China[J].Journal of Asian Earth Sciences,29(5/6):637-650.
Zhang L, Yang L Q, Groves D I,et al,2018.Geological and isotopic constraints on ore genesis,Huangjindong gold deposit,Jiangnan Orogen,southern China[J].Ore Geology Reviews,99:264-281.
Zhang L, Yang L Q, Groves D I,et al,2019.An overview of timing and structural geometry of gold,gold-antimony and antimony mineralization in the Jiangnan Orogen,southern China[J].Ore Geology Reviews,115:103173.
Zhong J, Pirajno F, Chen Y J,2017.Epithermal deposits in South China:Geology,geochemistry,geochronology and tectonic setting[J].Gondwana Research,42:193-219.
Zhou Y, Xu D, Dong G,et al,2021.The role of structural reactivation for gold mineralization in northeastern Hunan Province,South China[J].Journal of Structural Geology,145:104306.
Zou S H, Zou F H, Ning J T,et al,2018.A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,92:42-60.
陈振亚,陈原林,顾尚义,等,2019.江南造山带西南缘造山型金矿含炭质石英脉与金成矿关系研究[J].矿产勘查,10(4):870-879.
傅昭仁,李紫金,郑大瑜,1999.湘赣边区NNE向走滑造山带构造发展样式[J].地学前缘,(4):263-272.
刘钦甫,袁亮,李阔,等,2018.不同变质程度煤系石墨结构特征[J].地球科学,43(5):1663-1669.
卢焕章,池国祥,朱笑青,等,2018.造山型金矿的地质特征和成矿流体[J].大地构造与成矿学,42(2):244-265.
毛景文,李红艳,1997.江南古陆某些金矿床成因讨论[J].地球化学,(5):71-81.
王庆飞,邓军,赵鹤森,等,2019.造山型金矿研究进展:兼论中国造山型金成矿作用[J].地球科学,44(6):2155-2186.
王义天,刘俊辰,毛景文,2020.3种主要类型金矿床成矿特征、成矿条件及找矿意义[J].黄金,41(9):12-21.
温志林,邓腾,董国军,等,2016.湘东北万古金矿床控矿构造特征与控矿规律研究[J].大地构造与成矿学,40(2):281-294.
肖拥军,陈广浩,2004.湘东北大洞─万古地区金矿构造成矿定位机制的初步研究[J].大地构造与成矿学,(1):38-44.
[1] Tai’an WAN,Deru XU,Wen MA,Shengwei ZHANG,Guojian WANG,Yubing BIAN,Bo LI. Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold Deposit,Northeast Hunan and Its Implication to Gold Mineralization Mechanism [J]. Gold Science and Technology, 2022, 30(5): 676-690.
[2] Yongle LIU,Aikui ZHANG,Zhigang LIU,Feifei SUN,Shuyue HE,Daming ZHANG,Mingjuan KUI,Jianping ZHANG. Metallogenic Model of Gold Deposits and Genetic Types in the Western Section of East Kunlun,Qinghai Province [J]. Gold Science and Technology, 2022, 30(4): 483-497.
[3] Hailong CHEN,Zhibin XU,Xiaohong YANG,Haiyan YANG,Shenggang WU,Boren ZHENG,Lei GAO,Junhui CHEN. Application of Hydrocarbon-Mercury Superimposed Halo Method in Deep Prospecting of Wangu Gold Deposit and Its Periphery in Hunan Province [J]. Gold Science and Technology, 2022, 30(3): 366-381.
[4] Zhen CHEN, Cuizhi WANG, Guxian LV, Baolin ZHANG, Qipeng ZHANG, Junbin WEI, Xiaoming SHI. Typomorphic Characteristics of Chemical Composition of Pyrite in Chaihu-lanzi Gold Deposit and Its Mineralogy Significance [J]. Gold Science and Technology, 2022, 30(2): 165-178.
[5] Ke XU, Deru XU. Study on the Formation Mechanism of Altered Rock Type Gold Mineralization of Huangjindong Gold Deposit in Jiangnan Orogenic Belt [J]. Gold Science and Technology, 2022, 30(2): 151-164.
[6] Gaizhong LIANG,Kuifeng YANG,Hongrui FAN,Xinghui LI. Genesis of Colloidal Pyrite and Its Metallogenic Significance in Asiha Gold Deposit,East Kunlun [J]. Gold Science and Technology, 2022, 30(1): 19-33.
[7] Zhilin WANG,Yang WU,Deru XU,Shaohao ZOU,Guojun DONG,Erke PENG,Juntao NING,Bo KANG. Occurrence State and Ore-forming Regularity of Critical Metal Cobalt in the Changsha-Pingjiang Fault Zone,Northeastern Hunan Province [J]. Gold Science and Technology, 2020, 28(6): 779-785.
[8] Jiawei WEN,Pengliang SHI,Yanbing LIU,Jing ZHANG,Hailang QU,Yuanshen LI,Boxin HU,Guang MIAO. Thermoelectric Characteristics of Pyrite and Deep Prospecting Prediction in Erdaogou Gold Deposit, Liaoning Province [J]. Gold Science and Technology, 2020, 28(6): 812-824.
[9] Hua GAO, Yuhua XIE, Liang YANG, Zhe ZHANG, Xinxing KE, Xiaomin LIU, Jianbiao LUO, Qi LIU, Jishun LIU, Zhilin WANG, Hua KONG. Composition Typomorphic Characteristics of Pyrite and Its Genetic Implication for Gold Deposits in Tongdao County,Hunan Province [J]. Gold Science and Technology, 2020, 28(5): 712-726.
[10] Gang CHEN, Maohong CHEN, Kezhong MA, Rui GE, Shenxiang GUO, Qiqiang WU, Qisheng YUAN. Genetic Types and Prospecting Significance of Liumei Gold Deposit,Guigang,Guangxi Province,China [J]. Gold Science and Technology, 2020, 28(4): 479-496.
[11] Zhen ZHANG, Shengyuan NING, Zengtian XU. Mineralogy of Gold-bearing Pyrite and Its Significance for Deep Prospecting in the Jiuqu Gold Deposit,Linglong Area,Jiaodong Peninsula [J]. Gold Science and Technology, 2020, 28(3): 328-336.
[12] Yumin CHEN, Huafeng ZHANG, Congying ZHANG, Huanlong HU, Zhaokun WANG, Qingdong ZENG, Hongrui FAN. Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula [J]. Gold Science and Technology, 2019, 27(5): 637-647.
[13] Qingwei LUO,Baoguo WANG,Aiwen YI,Kechuan ZHANG,Ze PAN,Shengya ZHANG. Typomorphic Characters and Significance of Pyrite in a Greenstone Belt Type Gold Deposit in Tanzania [J]. Gold Science and Technology, 2019, 27(1): 15-24.
[14] Wenqiang ZHAO,Chuanjin JIANG,Baobao SHI. Optimization Study on the Sulfur Separation Process for Cyanide Tailing [J]. Gold Science and Technology, 2019, 27(1): 129-136.
[15] Yanhua LIU,Guobao CHEN,Hongying YANG,Zhenan JIN,Gairong WANG. Research on Mechanical Activation Properties and Leaching Test of Arseno-pyrite [J]. Gold Science and Technology, 2018, 26(5): 669-676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!