img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (6): 779-785.doi: 10.11872/j.issn.1005-2518.2020.06.147

    Next Articles

Occurrence State and Ore-forming Regularity of Critical Metal Cobalt in the Changsha-Pingjiang Fault Zone,Northeastern Hunan Province

Zhilin WANG1(),Yang WU1,Deru XU2(),Shaohao ZOU2,Guojun DONG3,Erke PENG1,Juntao NING3,Bo KANG3   

  1. 1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring,Ministry of Education,School of Geosciences and Info-Physics,Central South University,Changsha 410083,Hunan,China
    2.State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,Jiangxi,China
    3.Team 402,Hunan Geology and Mineral Resources Exploration and Development Bureau,Changsha 410004,Hunan,China
  • Received:2020-08-07 Revised:2020-09-14 Online:2020-12-31 Published:2021-01-29
  • Contact: Deru XU E-mail:wangzhilin1025@163.com;xuderu@gig.ac.cn

Abstract:

Recently,the exploration of cobalt resources in the Jingchong-Beishan area,the east of Changsha-Pingjiang fault zone,northeastern Hunan Province,has made great advances.Some Co (-polymetallic) vein deposits including the medium-size Jingchong Cu-Co polymetallic deposit and Hengdong Co-Cu deposit,and Dayan Au-Co occurrence were discovered in this region.Based on the detailed field observation,this study identified the ore stages,and concluded the metallogenic characteristics of Changsha-Pingjiang cobalt ore belt as well as the ore-forming factors.The combined microscopic observation and in-situ analytical methods revealed that the metal Co was mainly incorporated in fine-grained pyrite and arsenopyrite as stoichiometric substitution,with subordinate occurrence as independent mineral cobaltite.The complicated texture and chemical compositions of Co-beating pyrite and arsenopyrite indicated that pyrite associated with arsenopyrite has the higher Co concentration (up to 13.48%),greater than that in arsenopyrite-exclusive assemblages.Therefore,the mineral assemblage of fine-grained pyrite and arsenopyrite can be used as the mineral fingerprint to trace the high-grade Co ores during the prospecting exploration.Subsequently,the preliminary mineral processing technology was proposed.

Key words: critical metal cobalt, pyrite, arsenopyrite, cobaltite, Changsha-Pingjiang fault zone, occurrence state, northeast of Hunan Province

CLC Number: 

  • P618.51

Fig.1

Sketch map of regional geology and mineral resources distribution in northeastern Hunan Province[13]"

Fig.2

Geological map of the Hengdong Co-Cu deposit(a) and geological section of exploration line 32 of the Jingchong Cu-Co polymetallic deposit(b)[10,12]"

Fig.3

Ore types and the mineralogical characteristics of cobalt-bearing minerals in the Jingchong mining area,the Changsha-Pingjiang cobalt belt"

1 Geological Survey U.S.. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply[R].Reston:
U.S. Geological Survey Professional Paper1802,2017.
2 许德如,王智琳,聂逢君, 等.中国钴矿资源现状与关键科学问题[J].中国科学基金,2019,33(2):125-132.
Xu Deru,Wang Zhilin,Nie Fengjun,et al.Cobalt resources in China:Current research status and key scientific issues[J].Bulletin of National Natural Science Foundation of China,2019,33(2):125-132.
3 中华人民共和国自然资源部.中国矿产资源报告[M].北京:地质出版社,2019.
Ministry of Natural Resources of the People’s Republic of China.China Mineral Resources[M].Beijing:Geological Press,2019.
4 丰成友,张德全,党兴彦.中国钴资源及其开发利用概况[J].矿床地质,2004,23(1):93-100.
Feng Chengyou,Zhang Dequan,Dang Xingyan.Cobalt resources of China and their exploitation and utilization[J].Mineral Deposits,2004,23(1):93-100.
5 Wang Z L,Xu D R,Zhang Z C,et al.Mineralogy and trace element geochemistry of the Co- and Cu-bearing sulfides from the Shilu Fe-Co-Cu ore district in Hainan Province of South China[J].Journal of Asian Earth Sciences,2015,113:980-997.
6 Feng C Y,Qu W J,Zhang D Q,et al. Re-Os dating of pyrite from the Tuolugou stratabound Co(Au) deposit,eastern Kunlun Orogenic Belt,northwestern China[J].Ore Geology Reviews,2009,36(1/2/3):213-220.
7 丰成友,张德全,佘宏全,等.青海驼路沟钴(金)矿床形成的构造环境及钴富集成矿机制[J].矿床地质,2006,25(5):544-561.
Feng Chengyou,Zhang Dequan,She Hongquan,et al.Tectonic setting and metallogenic mechanism of Tuolugou cobalt(gold) deposit,Qinghai Province[J].Mineral Deposits,2006,25(5):544-561.
8 董耀松.吉林大横路钴铜矿床钴元素地球化学特征及矿床成因[J].世界地质,2001,20(1):30-33.
Dong Yaosong.Cobalt element geochemical characteristics of Dahenglu cobalt-copper ore deposit in Jilin Province and its genetics[J].World Geology,2001,20(1):30-33.
9 焦建刚,黄喜峰,袁海潮,等.青海德尔尼铜(钴)矿床研究新进展[J].地球科学与环境学报,2009,31(1):42-47.
Jiao Jiangang,Huang Xifeng,Yuan Haichao, et al.Progress in the research of Deerni Cu(Co) ore deposit[J].Journal of Earth Sciences and Environment,2009,31(1):42-47.
10 Zou S H,Zou F H,Ning J T,et al. A stand-alone Co mineral deposit in northeastern Hunan Province,South China:its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,2018,92:42-60.
11 宁钧陶.湘东北原生钴矿成矿地质条件分析[J].湖南地质,2002,21(3):192-195.
Ning Juntao.Analysis on metallogenic geologic conditions of original Co-deposits in northeastern Hunan[J].Hunan Geology,2002,21(3):192-195,200.
12 Wang Z L,Xu D R,Chi G X,et al. Mineralogical and isotopic constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province,South China[J].Ore Geology Reviews,2017,88:638-654.
13 许德如,王力,李鹏春,等.湘东北地区连云山花岗岩的成因及地球动力学暗示[J].岩石学报,2019,25(5):1056-1078.
Xu Deru,Wang Li,Li Pengchun,et al.Petrogenesis of the Lianyunshan granites in northeastern Hunan Province,South China,and its geodynamic implications[J].Acta Petrologica Sinica,2019,25(5):1056-1078.
14 张文山.湘东北长沙—平江断裂动力变质带的构造及地球化学特征[J].大地构造与成矿学,1991,15(2):100-109.
Zhang Wenshan.Structural and geochemical features of the Changsha-Pingjiang fracture dynamic metamorphism zone in northeastern Hunan Province,China[J].Geotectonica et Metallogenia,1991,15(2):100-109.
15 Wang X L,Zhou J C,Griffin W L,et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogeny:Dating the assembly of the Yangtze and Cathaysia Blocks[J].Precambrian Research,2007,159(1/2):117-131.
16 Ji W B,Lin W,Faure M,et al. Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan province(middle Yangtze region),South China:Geodynamic implications for the Paleo-Pacific subduction[J].Journal of Asian Earth Sciences,2017,141:174-193.
17 Shu L S,Zhou X M,Deng P,et al.Mesozoic tectonic evolution of the Southeast China Block:New insights from basin analysis[J].Journal of Asian Earth Sciences,2009,34(3):376-391.
18 Lin W,Faure M,Monié P,et al.Tectonics of SE China:New insights from the Lushan massif (Jiangxi Province)[J].Tectonics,2000,19(5):852-871.
19 Sun W D,Ling M X,YangX Y,et al.Ridge subduction and porphyry copper-gold mineralization:An overview[J].Science China(Earth Sciences),2010,53:475-484.
20 Li J H,Zhang Y Q,Dong S W,et al.Cretaceous tectonic evolution of South China:A preliminary synthesis[J].Earth-Science Reviews,2014,134:98-136.
[1] Jiawei WEN,Pengliang SHI,Yanbing LIU,Jing ZHANG,Hailang QU,Yuanshen LI,Boxin HU,Guang MIAO. Thermoelectric Characteristics of Pyrite and Deep Prospecting Prediction in Erdaogou Gold Deposit, Liaoning Province [J]. Gold Science and Technology, 2020, 28(6): 812-824.
[2] Hua GAO, Yuhua XIE, Liang YANG, Zhe ZHANG, Xinxing KE, Xiaomin LIU, Jianbiao LUO, Qi LIU, Jishun LIU, Zhilin WANG, Hua KONG. Composition Typomorphic Characteristics of Pyrite and Its Genetic Implication for Gold Deposits in Tongdao County,Hunan Province [J]. Gold Science and Technology, 2020, 28(5): 712-726.
[3] Gang CHEN, Maohong CHEN, Kezhong MA, Rui GE, Shenxiang GUO, Qiqiang WU, Qisheng YUAN. Genetic Types and Prospecting Significance of Liumei Gold Deposit,Guigang,Guangxi Province,China [J]. Gold Science and Technology, 2020, 28(4): 479-496.
[4] Zhen ZHANG, Shengyuan NING, Zengtian XU. Mineralogy of Gold-bearing Pyrite and Its Significance for Deep Prospecting in the Jiuqu Gold Deposit,Linglong Area,Jiaodong Peninsula [J]. Gold Science and Technology, 2020, 28(3): 328-336.
[5] Qihao GUI,Shixing WANG,Libo ZHANG,Jinqing ZHENG. Study on the Process Mineralogy of Refractory Gold Concentrate in Zhenyuan, Yunnan Province [J]. Gold Science and Technology, 2019, 27(6): 941-949.
[6] Yumin CHEN, Huafeng ZHANG, Congying ZHANG, Huanlong HU, Zhaokun WANG, Qingdong ZENG, Hongrui FAN. Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula [J]. Gold Science and Technology, 2019, 27(5): 637-647.
[7] Qingwei LUO,Baoguo WANG,Aiwen YI,Kechuan ZHANG,Ze PAN,Shengya ZHANG. Typomorphic Characters and Significance of Pyrite in a Greenstone Belt Type Gold Deposit in Tanzania [J]. Gold Science and Technology, 2019, 27(1): 15-24.
[8] Wenqiang ZHAO,Chuanjin JIANG,Baobao SHI. Optimization Study on the Sulfur Separation Process for Cyanide Tailing [J]. Gold Science and Technology, 2019, 27(1): 129-136.
[9] Yanhua LIU,Guobao CHEN,Hongying YANG,Zhenan JIN,Gairong WANG. Research on Mechanical Activation Properties and Leaching Test of Arseno-pyrite [J]. Gold Science and Technology, 2018, 26(5): 669-676.
[10] Leilei ZHANG, Jing ZHANG, Qisong WANG, Liang CHEN, Xu’an CHEN. Characteristics of Pyrite from Huaishuping Gold Deposit in Xiong’ershan District and Its Geological Significance [J]. Gold Science and Technology, 2018, 26(4): 481-491.
[11] LI Jiafeng, YANG Hongying, TONG Linlin, JIN Zhenan, ZHANG Dengchao. Experimental Study on Bacterial Oxidation-Gold Extraction of Paodaoling Refractory Gold Concentrate [J]. Gold Science and Technology, 2018, 26(2): 248-253.
[12] SONG Xuewen,ZHU Jiaqian,LUO Zengxin,CHEN Bo. Study on the Gold Flotation Technology and Process Mineralogy of a Cyanide Residue [J]. Gold Science and Technology, 2018, 26(1): 89-97.
[13] PAN Haodan1,2,YANG Hongying,TONG Linlin,LI Chengzhuo,DU Shilin,HAN Xinyi,HAN Shuang. Effects of Initial pH on ASH-07 Bacterial Growth and Chalcopyrite Bio-leaching Process [J]. Gold Science and Technology, 2018, 26(1): 115-123.
[14] QIU Xuemin,CHEN Guobao,ZHANG Qin,YANG Hongying. Experimental Study on Flotation Recovery of Valuable Metals from Ultrafine Cyanide Tailing Containing High Grade Lead and Zinc [J]. Gold Science and Technology, 2017, 25(6): 61-67.
[15] WANG Xiaoqing,YANG Xingke,RUI Huichao. The Crystal Form Typomorphism of Pyrite and Its Variation Regularity and Prospecting Significance in Daiwangshan Gold Deposit, Inner Mongolia [J]. Gold Science and Technology, 2017, 25(5): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[2] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[3] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] CHEN Hua-Dun. [J]. J4, 2010, 18(4): 50 -53 .
[6] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[7] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[8] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[9] WANG Da-Beng, SONG Bing-Jian, HUI Ku-Meng. The Application of High Power IP Method for Searching Concealed Metallic Mine in Beishuiquan,Liaoning Province[J]. J4, 2010, 18(3): 76 -78 .
[10] LIU Qing-Guang, GAO Hai-Feng, HUANG Suo-Yang. The Application of PDA in Geology Department of Jiaojia Gold Mine[J]. J4, 2010, 18(3): 79 -82 .