img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (6): 812-824.doi: 10.11872/j.issn.1005-2518.2020.06.088

• Mineral Exploration and Resource Evaluation • Previous Articles     Next Articles

Thermoelectric Characteristics of Pyrite and Deep Prospecting Prediction in Erdaogou Gold Deposit, Liaoning Province

Jiawei WEN1,2(),Pengliang SHI1,Yanbing LIU1,Jing ZHANG2(),Hailang QU1,Yuanshen LI1,Boxin HU1,Guang MIAO1   

  1. 1.Beijing Jinyou Geological Exploration Co. ,Ltd. ,Beijing 100011,China
    2.School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
  • Received:2020-05-12 Revised:2020-06-09 Online:2020-12-31 Published:2021-01-29
  • Contact: Jing ZHANG E-mail:1938464236@qq.com;zhangjing@cugb.edu.cn

Abstract:

Erdaogou gold deposit is a magmatic-hydrothermal deposit hosted in continental volcanic rocks in Liaoning Province,its orebodies are strictly controlled by structures.Predecessors have done a lot of research on the genesis of Erdaogou gold deposit in Liaoning,and carried out a lot of exploration and prospecting work in the mining area, and found some new veins, but the deep prospecting prediction of some mined veins are relatively weak.After years of mining and production, the mine urgently needs to increase resource reserves to maintain development. At present, the control length of No.1 and No.3 veins are about 680 m, while the control length of No. 5-1 vein on the west has reached 1 600 m,and the deep part of No.1 and No.3 veins may still have a certain scale extension.At present,except for the deep prospecting prediction by using the thermoelectricity of pyrite at the middle section of the 250 m to -215 m depth of the No.3 vein, the systematic research on the No.1 and No.3 veins have not been carried out.In order to predict the extension,metallogenic environment and mineralization of No.1 and No.3 veins,this paper systematically studied the thermoelectric characteristics of pyrite,ore-forming temperature,veins denudation rate,XNP mean and the occurrence rate of different elevations of P-type pyrite of the samples at the 450 m to -305 m depth.The results show that the ore-forming temperatures of No.1 and No.3 veins are 130~280 ℃,which belong to medium-low temperature hydrothermal deposits.The average denudation rates of No.1 vein is 45.89%,the contour of denudation rate becomes a low value area to the deep and is not closed,the thermoelectric conductive types is mainly P type, P-N type and mean value of XNP at the -305 m depth is 83.33(upper part of vein),the occurrence rate of P-type pyrite at the middle section of -215 m increases. The average denudation rates of No.3 vein is 50%.The contour of denudation rate becomes a high value area and is not completely closed,the thermoelectric conductive types is mainly P-N type and N-P type,mean value of XNP at the -305 m depth is -8(middle part of vein),the occurrence rate of P-type pyrite in the middle section of -215 m decreases,which show the middle section of -305 m is the middle and upper part of No.1 vein and the lower part of No.3 vein.The deep part of No.1 vein extends greatly,while the No.3 vein still extends partly to the depth.The metallogenic environment of No.1 vein is gradually stable and greatly mine-ralized at the -215 m depth,but the metallogenic environment of No.3 vein changes from turbulent to stable and mineralization is better at the -260 m depth.

Key words: pyrite, thermoelectric characteristics, denudation rate, dispersion, ore-forming temperature, occurrence rate of P-type pyrite

CLC Number: 

  • P618.51

Fig.1

Regional geological map of the Erdaogou gold deposit[Fig.(a) modified after reference[4];Fig.(b) modified after reference[20]]"

Fig.2

Geological map of the Erdaogou gold deposit(modified after reference[5])"

Fig.3

Profile of No.4 exploration line in the Erdaogou gold deposit"

Fig.4

Division of metallogenic stages of Erdaogou gold deposit"

Table 1

Thermoelectric coefficients of pyrites from No.1 vein"

中段/m样品编号N型α/(μV·℃-1P型α/(μV·℃-1
最大值最小值平均值频率/%最大值最小值平均值频率/%
450Y03-01-103.20-549.50-262.7440.00388.7027.00202.0660.00
370Y05-01-36.90-108.60-71.2625.00297.8019.50137.7175.00
Y05-02-14.20-109.20-45.3745.00286.1036.70158.6955.00
Y05-03-237.20-356.60-296.9010.00302.7057.90154.2690.00
Y05-04-33.20-66.30-51.7015.00338.0027.90157.5575.00
330Y06-010.000.000.000.00416.9098.90285.90100.00
Y06-02-85.50-95.70-91.4820.00338.10111.40254.8480.00
Y06-030.000.000.000.00368.70-29.70256.7495.00
250Y08-07-14.40-268.00-101.0825.00422.0049.30213.9175.00
Y08-08-61.40-118.70-86.1135.00370.9011.70169.2965.00
210Y09-01-37.90-177.10-83.2820.00482.0021.80264.1380.00
Y09-02-38.10-266.50-137.2025.00431.7063.00287.1575.00
170Y10-08-53.20-74.70-63.9510.00309.1010.80124.7390.00
130Y11-030.000.000.000.00450.00405.80427.9010.00
90Y12-10-30.00-416.20-143.2830.00300.9039.30159.8470.00
10Y14-060.000.000.000.00366.30177.30267.12100.00
Y14-07-13.70-519.20-263.8230.00424.6092.40298.4170.00
Y14-08-2.80-56.20-21.5315.00268.402.90154.0585.00
Y14-09-71.60-553.30-320.2975265.1032.00129.5425.00
Y14-10-25.40-96.90-60.9230.00324.9014.30114.9270.00
Y14-11-14.60-457.10-130.1845.00329.4040.50143.7455.00
-35Y15-01-26.00-95.70-53.4425.00365.2079.20232.2575.00
Y15-02-14.20-443.80-227.8460.00309.8054.80162.7440.00
Y15-030.000.000.000.00256.20-490.40-330.355.00
Y15-040.000.000.000.00284.9090.20196.07100.00
Y15-05-24.90-81.30-57.2730.00388.6029.60130.0570.00
-80Y16-010.000.000.000.00375.70127.40278.59100.00
Y16-020.000.000.000.00495.8058.70243.56100.00
Y16-03-36.00-137.70-79.0490.00261.80111.40186.6010.00
Y16-040.000.000.000.00312.7033.70137.57100.00
-125Y17-01-25.80-90.90-68.4315.00492.9094.30253.7485.00
-170Y18-01-24.50-43.200.0020.00592.6015.30169.4180.00
Y18-020.000.000.000.00370.00126.10268.24100.00
Y18-03-418.90-418.90-418.905.00416.7045.30251.9195.00
Y18-04-23.50-433.20-196.7425.00508.9023.50186.1475.00
Y18-05-11.80-220.20-75.1625.00367.6023.60134.2575.00
-215Y19-01-101.20-162.90-132.0510.00338.303.80205.4190.00
Y19-02-20.60-434.80-174.8715.00368.3023.10188.0985.00
Y19-030.000.000.000.00336.0069.00251.74100.00
Y19-04-18.70-368.30-156.1070.00266.005.30117.8330.00
-260Y20-01-26.30-36.90-31.6010.00366.8013.20193.1790.00
Y20-02-43.20-59.80-51.5010.00520.1019.10251.5390.00
Y20-03-27.20-130.80-64.6730.00237.702.7082.8970.00
Y20-04-138.10-138.10-138.105.00497.2096.70344.7995.00
Y20-050.000.000.000.00386.6017.90182.26100.00
-305Y21-010.000.000.000.00465.6082.90293.94100.00
Y21-02-108.70-123.70-116.2010.00462.20184.80300.2990.00
Y21-030.000.000.000.00361.90102.40264.24100.00

Table 2

Thermoelectric coefficients of pyrites from No.3 vein"

中段/m样品编号N型α/(μV·℃-1P型α/(μV·℃-1
最大值最小值平均值频率/%最大值最小值平均值频率/%
450Y03-02-50.30-50.30-50.305.00370.60111.40218.9595.00
Y03-03-27.20-577.80-467.4685.00222.6021.00142.0715.00
Y03-04-16.00-595.20-344.2485.00253.70252.30253.0015.00
410Y04-01-26.30-175.10-83.8135.00354.8014.70189.8865.00
370Y05-050.000.000.000.00374.6087.30244.06100.00
Y05-070.000.000.000.00422.60148.20314.52100.00
330Y06-04-8.50-87.80-47.0465.0099.705.6046.4035.00
Y06-050.000.000.000.00236.2051.60157.67100.00
Y06-06-3.10-519.50-224.2685.00266.106.20148.1715.00
Y06-07-194.10-501.40-423.1040.00324.50167.60243.3960.00
250Y08-09-118.20-118.20-118.205.00367.1017.20226.2995.00
Y08-10-18.20-18.20-18.205.00421.70108.10282.3695.00
210Y09-03-67.80-67.80-67.805.00339.7016.30209.2195.00
Y09-040.000.000.000.00407.105.40263.32100.00
Y09-05-10.90-44.00-27.4510.00272.7073.80173.3590.00
170Y10-09-57.30-84.20-70.7510.00397.9018.30193.2890.00
Y10-10-61.60-140.00-90.6355.00213.108.5094.2645.00
Y10-11-19.10-103.80-56.1530.00420.8035.30248.3970.00
130Y11-04-45.70-205.70-94.9935.00359.0011.60155.3365.00
Y11-05-248.50-486.70-367.6010.00522.0055.70248.8390.00
Y11-06-33.90-521.70-355.2895.0051.0051.0051.005.00
Y11-07-14.50-455.30-164.1845.00270.9011.50172.9855.00
Y11-080.000.000.000.00337.20106.60283.61100.00
Y11-09-78.90-78.90-78.905.00468.9019.90249.9795.00
-35Y15-06-23.90-123.90-72.0230.00339.3038.10194.5770.00
-125Y17-02-54.30-505.70-171.7825.00390.2066.70200.1775.00
Y17-03-2.90-88.80-52.0970.00152.305.7052.2030.00
-170Y18-06-78.10-587.50-348.3635.00523.40177.2296.0865.00
Y18-07-16.30-90.20-50.5990.0031.602.7017.1510.00
-215Y19-05-48.40-80.20-60.3820.00391.9010.80181.3980.00
Y19-06-21.10-134.20-92.9015.00490.8010.40252.7285.00
Y19-07-8.10-16.20-12.1510.00531.0074.00276.0790.00
-260Y20-06-10.40-59.90-35.1510.00368.8026.20215.7690.00
Y20-070.000.000.000.00324.60103.40221.52100.00
Y20-08-2.50-146.70-54.7075.00246.902.50160.2825.00
Y20-09-133.10-520.90-376.7315.00335.2069.80203.4485.00
Y20-10-24.10-508.10-372.8135.00314.5080.40210.3565.00
Y20-11-42.90-89.40-59.1315.00375.7039.40154.8985.00
Y20-12-5.70-93.20-62.0225.00454.3017.30213.1075.00
-305Y21-05-72.60-371.30-220.0040.00451.1089.40284.4860.00
Y21-06-45.60-45.60-45.605.00309.10107.20191.4195.00
Y21-07-49.90-483.60-209.9775.00354.20129.10245.8825.00
Y21-08-59.00-113.80-84.3315.00291.1061.70166.5985.00
Y21-09-46.30-125.70-86.0010.00315.1060.40179.6390.00

Fig.5

Histograms of thermoelectric coefficients of pyrites from No.1 vein"

Fig.6

Histograms of thermoelectric coefficients of pyrites from No.3 vein"

Fig.7

Relationship between thermoelectric coefficients and temperature of pyrites from No.1 vein(a) and No.3 vein (b)"

Fig.8

Histograms of ore-forming temperature of pyrites in No.1 vein (a) and No.3 vein (b)"

Fig.9

Contour map of denudation rate from No.1 vein"

Fig.10

Contour map of denudation rate from No.3 vein"

Fig.11

Occurrence rate of P-type pyrite in different middle sections"

Fig.12

The map of metallogenic environment and mineralization mark"

1 王有爵,王文清.辽西火山岩型金矿地质特征及成因讨论[J].辽宁地质,1990(4):289-303.
Wang Youjue,Wang Wenqing.Geological characteristics and genesis of volcanic gold deposits in western Liaoning Province[J].Liaoning Geology,1990(4):289-303.
2 刘宗秀,魏存弟,赵春光,等.金厂沟梁—二道沟金矿田地质地球化学特征及成因探讨[J].世界地质,2002,21(1):13-17.
Liu Zongxiu,Wei Cundi,Zhao Chunguang,et al.Discussin on genesis and geological-geochemical feature of Jinchanggouliang-Erdaogou gold minerogenetic field[J].World Geology,2002,21(1):13-17.
3 马光,刘继顺,张洪培.再论北票二道沟金矿床成矿物质来源[J].黄金,2004,25(10):11-15.
Ma Guang,Liu Jishun,Zhang Hongpei.New idea on the origin of ore-forming materials of Erdaogou gold deposit in Beipiao,Liaoning Province[J].Gold,2004,25(10):11-15.
4 聂飞,刘书生,董国臣,等.辽西二道沟金矿成矿物质来源:来自S-Pb同位素的证据[J].现代地质,2018,32(6):1283-1291.
Nie Fei,Liu Shusheng,Dong Guochen,et al.The ore-forming material of the Erdaogou gold deposit in west Liaoning Provice:Evidence form S-Pb isotopes[J].Geoscience,2018,32(6):1283-1291.
5 王志,徐忠勋,杨福和.辽宁省二道沟金矿地质及成因[J].长春地质学院学报,1989,19(3):287-297.
Wang Zhi,Xu Zhongxun,Yang Fuhe.Geology and genesis of Erdaogou gold deposit,Liaoning Province[J].Journal of Changchun University of Earth Science,1989,19(3):287-297.
6 苗来成,范蔚茗,翟明国,等.金厂沟梁—二道沟金矿田内花岗岩类侵入体锆石的离子探针U-Pb年代学及意义[J].岩石学报,2003,19(1):71-80.
Miao Laicheng,Fan Weiming,Zhai Mingguo,et al.Zircon SHRIMP U-Pb geochronology of the granitoid intrusions from Jinchanggouliang-Erdaogou gold orefield and its significance[J].Acta Petrologica Sinica,2003,19(1):71-80.
7 段培新,李长民,刘翠,等.内蒙古赤峰金厂沟梁金矿区花岗岩类年代学、地球化学特征及其地质意义[J].岩石学报,2014,30(11):3189-3202.
Duan Peixin,Li Changmin,Liu Cui,et al.Geochronology and geochemistry of the granites from the Jinchanggouliang gold deposit area in the Inner Mongolia and its geological significance[J].Acta Petrologica Sinica,2014,30(11):3189-3202.
8 朱翠祎,刘烊,张岱.中国金矿成矿地质特征、预测模型及资源潜力[J].地学前缘,2018,25(3):1-12.
Zhu Cuiyi,Liu Yang,Zhang Dai.Metallogenic geological features,prediction models and resources potential of gold deposits in China[J].Earth Science Frontiers,2018,25(3):1-12.
9 贾三石,王恩德,付建飞,等.冀东—辽西主要金矿矿集区地质特征的差异性与成矿作用的统一性探析[J].地质学报,2011,85(9):1493-1506.
Jia Sanshi,Wang Ende,Fu Jianfei,et al.Geological differences and mineralization unity of the key gold ore concentrated regions in eastern Hebei and western Liaoning Provinces[J].Acta Geologica Sinica,2011,85(9):1493-1506.
10 王成辉,王登红,黄凡,等.中国金矿集区及其资源潜力探讨[J].中国地质,2012,39(5):1125-1142.
Wang Chenghui,Wang Denghong,Huang Fan,et al.The major gold concentration areas in China and their resource potentials[J].Geology in China,2012,39(5):1125-1142.
11 Reach M,Deditius A,Chryssoulis S,et al.Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:A SIMS/EMPA trace element study [J].Geochimica et Cosmochimica Acta,2013,104(1):50-61.
12 高振敏,杨竹森,李红阳,等.黄铁矿载金的原因和特征[J].高校地质学报,2000,6(2):156-162.
Gao Zhenmin,Yang Zhusen,Li Hongyang,et al.Genesis and characteristics of gold hosted by pyrite[J].Geological Journal of China Universities,2000,6(2):156-162.
13 邵伟,陈光远,孙岱生.黄铁矿热电性研究方法及其在胶东金矿的应用[J].现代地质,1990,4(1):46-57.
Shao Wei,Chen Guangyuan,Sun Daisheng.Method of investigating thermoelectricity of pyrite and its application to pyrites from gold deposits in Jiaodong region[J].Geoscience,1990,4(1):46-57.
14 李青,李胜荣,张秀宝,等.河北省灵寿县西石门金矿黄铁矿热电性标型及其找矿意义[J].地质学报,2013,87(4):542-553.
Li Qing,Li Shengrong,Zhang Xiubao,et al.Thermoelectric coefficient of pyrite from the Xishimen gold deposit in Lingshou County,Hebei Province and its prospecting significance[J].Acta Geologica Sinica,2013,87(4):542-553.
15 刘冲昊,刘家军,王建平,等.陕西省铧厂沟金矿床主矿带黄铁矿热电性特征及其地质意义[J].地学前缘,2013,20(4):264-272.
Liu Chonghao,Liu Jiajun,Wang Jianping,et al.Thermoelectric characteristics of pyrite from the main ore zone of the Huachanggou gold deposit,Shaanxi Province and its significance[J].Earth Science Frontiers,2013,20(4):264-272.
16 刘华南,刘家军,李小伟,等.内蒙古新地沟金矿床黄铁矿热电性特征及深部找矿意义[J].中国地质,2018,45(4):819-838.
Liu Huanan,Liu Jiajun,Li Xiaowei,et al.Thermoelectric characteristics of pyrite from the Xindigou gold deposit in Inner Mongolia and its significance on deep prospecting[J].Geology in China,2018,45(4):819-838.
17 徐万臣,赵秀英.辽宁北票二道沟金矿床黄铁矿和石英找矿标型性研究[J].地质实验室,1992,8(5):292-298.
Xu Wanchen,Zhao Xiuying.Study on prospecting typomorphism of pyrite and quartz in Erdaogou gold deposit,Beipiao,Liaoning[J].Geological Laboratory,1992,8(5):292-298.
18 李志国,李青云,董国臣.辽宁二道沟金矿床脉状矿体中黄铁矿热电性标型特征[J].地质论评,2013,59(增):524-525.
Li Zhiguo,Li Qingyun,Dong Guochen.Thermoelectric typomorphic characteristics of pyrite in vein orebody of Erdaogou gold deposit,Liaoning[J].Geological Review,2013,59(Supp.):524-525.
19 王鹏,董国臣,李志国,等.辽西北票二道沟金矿的成矿特点和黄铁矿热电性特征[J].现代地质,2013,27(2):314-323.
Wang Peng,Dong Guochen,Li Zhiguo,et al.Ore-forming characteristics and pyroelectricity of pyrite of the Erdaogou gold deposit,Beipiao,western Liaoning[J].Geoscience,2013,27(2):314-323.
20 朴寿成,李绪俊,师磊,等.赤峰—朝阳金矿化集中区元素分带特征及其应用[J].地质与勘探,2006,42(1):17-20.
Shoucheng Piao,Li Xujun,Shi Lei,et al.Element zoning and its application in the Chifeng-Chaoyang auriferous province[J].Geology and Exploration,2006,42(1):17-20.
21 王鹏,董国臣,许卫东,等.辽西北票二道沟金矿的矿化特点及其意义[J].地质与勘探,2013,49(3):429-436.
Wang Peng,Dong Guochen,Xu Weidong,et al.Mineralization characteristics of the Erdaogou gold deposit,western Liaoning and their significance[J].Geology and Exploration,2013,49(3):429-436.
22 张连昌,白阳,朱明田,等.华北克拉通金矿床区域成矿差异性分析[J].地球科学与环境学报,2018,40(4):363-380.
Zhang Lianchang,Bai Yang,Zhu Mingtian,et al.Regional differences of gold deposits on the North China Craton[J].Journal of Earth Sciences and Environment,2018,40(4):363-380.
23 徐万臣.辽宁北票二道沟金矿床地球化学特征及意义[J].地质与资源,2007,16(4):263-269.
Xu Wanchen.Geochemistry and significance of Erdaogou gold deposit in Beipiao,Liaoning Province[J].Geology and Resources,2007,16(4):263-269.
24 杨竹森,李红阳,高振敏,等.胶东北部超高品位金矿黄铁矿热电性研究[J].矿床地质,2000,19(4):307-314.
Yang Zhusen,Li Hongyang,Gao Zhenmin,et al.A study on thermoelectricity of pyrite from superhigh-grade gold deposits,northern Jiaodong[J].Mineral Deposits,2000,19(4):307-314.
25 谢玉玲,徐九华,钱大益,等.太白金矿黄铁矿热电性及其在找矿中的应用[J].北京科技大学学报,1999,21(1):1-5.
Xie Yuling,Xu Jiuhua,Qian Dayi,et al.Pyroelectricity of pyrite and application to prospecting in Taibai gold deposit[J].Journal of University of Science and Technlogy Beijing,1999,21(1):1-5.
26 要梅娟,申俊峰,李胜荣,等.河南嵩县前河金矿黄铁矿的热电性、热爆特征及其与金矿化的关系[J].地质通报,2008,27(5):649-656.
Yao Meijuan,Shen Junfeng,Li Shengrong,et al.Thermoelectric and thermal decrepitation characteristics of pyrite in the Qianhe gold deposit,Songxian County,Henan,China,and their relationships with gold mineralization[J].Geological Bulletin of China,2008,27(5):649-656.
27 刘坤,刘家军,吴杰,等.甘肃马坞金矿床8号矿体黄铁矿热电性特征及其地质意义[J].现代地质,2014,28(4):711-720.
Liu Kun,Liu Jiajun,Wu Jie,et al.Thermoelectric characteristic of pyrites from No.8 orebody of the Mawu gold deposit in Gansu Province and its significance[J].Geoscience,2014,28(4):711-720.
28 张玙,袁万明,王庆飞,等.吉林夹皮沟金矿带黄铁矿热电性及热爆裂特征[J].现代地质,2010,24(5):870-879.
Zhang Yu,Yuan Wanming,Wang Qingfei,et al.Thermoelectric and thermal decrepitation characteristics of pyrites from Jiapigou gold ore belt,Jilin Province[J].Geoscience,2010,24(5):870-879.
29 Андреев Б С.Пирит золоторудных месторождений[M].Москва:Изд.Наука,1992:51-63.
30 权志高.庞家河、左家庄金矿床载金矿物黄铁矿热电性的研究[J].矿产与地质,1995,9(6):509-513.
Quan Zhigao.Study on the thermoelectricity of gold-bearing pyrite in Pangjiahe and Zuojiazhuang gold deposits[J].Mineral Resources and Geology,1995,9(6):509-513.
31 张方方,王建平,刘冲昊,等.陕西双王金矿黄铁矿晶体形态和热电性特征对深部含矿性的预测[J].中国地质,2013,40(5):1634-1643.
Zhang Fangfang,Wang Jianping,Liu Chonghao,et al.The crystal forms and thermoelectricity of pyrite from the Shuangwang gold deposit,Shaanxi Province and their applications to metallogenic prognosis[J].Geology in China,2013,40(5):1634-1643.
[1] Zhilin WANG,Yang WU,Deru XU,Shaohao ZOU,Guojun DONG,Erke PENG,Juntao NING,Bo KANG. Occurrence State and Ore-forming Regularity of Critical Metal Cobalt in the Changsha-Pingjiang Fault Zone,Northeastern Hunan Province [J]. Gold Science and Technology, 2020, 28(6): 779-785.
[2] Hua GAO, Yuhua XIE, Liang YANG, Zhe ZHANG, Xinxing KE, Xiaomin LIU, Jianbiao LUO, Qi LIU, Jishun LIU, Zhilin WANG, Hua KONG. Composition Typomorphic Characteristics of Pyrite and Its Genetic Implication for Gold Deposits in Tongdao County,Hunan Province [J]. Gold Science and Technology, 2020, 28(5): 712-726.
[3] Gang CHEN, Maohong CHEN, Kezhong MA, Rui GE, Shenxiang GUO, Qiqiang WU, Qisheng YUAN. Genetic Types and Prospecting Significance of Liumei Gold Deposit,Guigang,Guangxi Province,China [J]. Gold Science and Technology, 2020, 28(4): 479-496.
[4] Zhen ZHANG, Shengyuan NING, Zengtian XU. Mineralogy of Gold-bearing Pyrite and Its Significance for Deep Prospecting in the Jiuqu Gold Deposit,Linglong Area,Jiaodong Peninsula [J]. Gold Science and Technology, 2020, 28(3): 328-336.
[5] Yumin CHEN, Huafeng ZHANG, Congying ZHANG, Huanlong HU, Zhaokun WANG, Qingdong ZENG, Hongrui FAN. Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula [J]. Gold Science and Technology, 2019, 27(5): 637-647.
[6] Qingwei LUO,Baoguo WANG,Aiwen YI,Kechuan ZHANG,Ze PAN,Shengya ZHANG. Typomorphic Characters and Significance of Pyrite in a Greenstone Belt Type Gold Deposit in Tanzania [J]. Gold Science and Technology, 2019, 27(1): 15-24.
[7] Wenqiang ZHAO,Chuanjin JIANG,Baobao SHI. Optimization Study on the Sulfur Separation Process for Cyanide Tailing [J]. Gold Science and Technology, 2019, 27(1): 129-136.
[8] Yanhua LIU,Guobao CHEN,Hongying YANG,Zhenan JIN,Gairong WANG. Research on Mechanical Activation Properties and Leaching Test of Arseno-pyrite [J]. Gold Science and Technology, 2018, 26(5): 669-676.
[9] Leilei ZHANG, Jing ZHANG, Qisong WANG, Liang CHEN, Xu’an CHEN. Characteristics of Pyrite from Huaishuping Gold Deposit in Xiong’ershan District and Its Geological Significance [J]. Gold Science and Technology, 2018, 26(4): 481-491.
[10] LI Jiafeng, YANG Hongying, TONG Linlin, JIN Zhenan, ZHANG Dengchao. Experimental Study on Bacterial Oxidation-Gold Extraction of Paodaoling Refractory Gold Concentrate [J]. Gold Science and Technology, 2018, 26(2): 248-253.
[11] SONG Xuewen,ZHU Jiaqian,LUO Zengxin,CHEN Bo. Study on the Gold Flotation Technology and Process Mineralogy of a Cyanide Residue [J]. Gold Science and Technology, 2018, 26(1): 89-97.
[12] PAN Haodan1,2,YANG Hongying,TONG Linlin,LI Chengzhuo,DU Shilin,HAN Xinyi,HAN Shuang. Effects of Initial pH on ASH-07 Bacterial Growth and Chalcopyrite Bio-leaching Process [J]. Gold Science and Technology, 2018, 26(1): 115-123.
[13] QIU Xuemin,CHEN Guobao,ZHANG Qin,YANG Hongying. Experimental Study on Flotation Recovery of Valuable Metals from Ultrafine Cyanide Tailing Containing High Grade Lead and Zinc [J]. Gold Science and Technology, 2017, 25(6): 61-67.
[14] WANG Xiaoqing,YANG Xingke,RUI Huichao. The Crystal Form Typomorphism of Pyrite and Its Variation Regularity and Prospecting Significance in Daiwangshan Gold Deposit, Inner Mongolia [J]. Gold Science and Technology, 2017, 25(5): 39-46.
[15] SHI Guiming,ZHAO Jieming,WU Caibin,HE Shuichun. Research on the Beneficiation Tests of Mafic Igneous Rock Type Gold Deposit in Sichuan Province [J]. Gold Science and Technology, 2016, 24(6): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[2] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[3] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] CHEN Hua-Dun. [J]. J4, 2010, 18(4): 50 -53 .
[6] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[7] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[8] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[9] WANG Da-Beng, SONG Bing-Jian, HUI Ku-Meng. The Application of High Power IP Method for Searching Concealed Metallic Mine in Beishuiquan,Liaoning Province[J]. J4, 2010, 18(3): 76 -78 .
[10] LIU Qing-Guang, GAO Hai-Feng, HUANG Suo-Yang. The Application of PDA in Geology Department of Jiaojia Gold Mine[J]. J4, 2010, 18(3): 79 -82 .