img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (1): 19-33.doi: 10.11872/j.issn.1005-2518.2022.01.051

• Mineral Exploration and Resource Evaluation • Previous Articles     Next Articles

Genesis of Colloidal Pyrite and Its Metallogenic Significance in Asiha Gold Deposit,East Kunlun

Gaizhong LIANG1,2(),Kuifeng YANG1,2,3(),Hongrui FAN1,2,3,Xinghui LI1,2,3   

  1. 1.Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    3.Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2021-05-06 Revised:2021-09-09 Online:2022-02-28 Published:2022-04-25
  • Contact: Kuifeng YANG E-mail:lianggaizhong@mail.iggcas.ac.cn;yangkuifeng@mail.iggcas.ac.cn

Abstract:

The Asiha vein-type gold deposit,located in the Eastern Kunlun orogenic belt,provides an excellent opportunity for deciphering precipitations of metals and origins of orogenic intrusion-related gold systems.Predecessors have proposed that Asiha gold deposit is an orogenic gold deposit or magmatic hydrothermal gold deposit related to intrusion body,and the genesis of the deposit is controversial.Gold precipitation is closely related to arsenic content and vulcanization,and the main precipitation mechanism is not clear.However,pyrite often occurs in many types of gold deposits,which can provide detailed mineralization information in explaining the source of ore-forming materials,the composition of ore-forming fluids and metallogenic physicochemical conditions,while colloidal pyrite with special structure can provide more important mineralization information.Pyrite is an excellent research object for constraining the genesis of ore deposits.There are two types of pyrite in Asiha gold deposit,namely,early euhedral crystalline pyrite and late colloidal pyrite.Through the study of the chemical composition and microstructure of colloidal pyrite,it is found that gold arsenic decoupling occurs in Asha gold deposit,and the gold precipitation is closely related to the particle size of pyrite.In order to clarify the genesis and gold precipitations of Asiha gold deposit,backscatter electron scanning microscope analysis,in-situ trace element analysis,area scan analysis and in-situ sulfur isotope analysis are carried out for colloidal pyrite.Colloidal pyrite is a parallel or irregular concentric ring belt with irregular complex surfaces.The transition between ribbons is a gradual transition.The bands on the strip often have the contraction pattern of the gel,and the width of the strip is 3~200 μm.Under high-power scanning electron microscope (SEM),it shows the aggregation of micron fine particles and dark gray substrate.Colloidal pyrite is rich in As (median of 3 164×10-6),Au (median of 4.15×10-6),Cu (median of 13 070×10-6),Pb (median of 1 157×10-6),Ag (median of 781.2×10-6),Sb (median of 1 668×10-6),but poor Co in (median of 44.48×10-6),Ni (median of 2.96×10-6) and Te (below the detection limit),and the Co/Ni ratio is greater than 10.The area scan shows clear zoning characteristics of As,Au,Co,Cu,Mo,Ag and Bi,and the distribution consistency of gold and arsenic is weak.The δ34S value range of colloidal pyrite(+6.1‰~+6.8‰) is narrow.Combined with the in-situ trace elements,in-situ sulfur isotopes and microstructure of colloidal pyrite,it is considered that the colloidal pyrite is of magmatic hydrothermal origin,which may be a close genetic relationship with the concealed granite porphyry in the Asiha gold deposit.Arsenic and Au in colloidal pyrite precipitated rapidly under the condition of sudden temperature drop are decoupled,and the micron size pyrite is the dominant factor controlling the enrichment of solid solution gold.

Key words: colloidal pyrite, in-situ microanalysis, trace element, sulfur isotope, Asiha gold deposit, East Kunlun metallogenic belt

CLC Number: 

  • P618.51

Fig.1

Structural sketch of East Kunlun orogenic belt(a)[modified after Dong et al.(2018)]and geological map of Asiha gold deposit"

Fig.2

Distribution map of orebody in Asiha gold deposit"

Fig.3

Representative reflected-light and backscattered electron(BSE)micrographs and hand specimen photographs of different types of pyrite in Asiha gold deposit"

Fig.4

Colloidal pyrite in high magnification backscattered electron(BSE)photographs"

Table 1

Analysis results of LA-ICP-MS in-situ trace element(10-6) and LA-MC-ICP-MS in-situ sulfur isotope of colloidal pyrite(‰)"

元素19ash30c-119ash30c-219ash30c-319ash30c-419ash30c-5中位数检出限

早期结晶黄铁矿

(Liang et al., 2021)

Co15.2561.5144.4866.8243.7244.480.042.0
Ni0.364.262.963.782.852.960.130.5
Cu15 91816 18913 07012 22111 19713 0700.330.5
Zn36.67191.5127.1269.5116.9127.10.90bdl
As1 3675 5163 1646 4662 9433 1640.292090
Ag882889781630653781.191.00bdl
Sb1 6682 1491 6062 5381 5091 6680.070.2
Te-0.39-0.230.160.43-0.41-0.230.63bdl
Au3.264.604.154.353.164.150.030.1
Pb1 1571 5349081 5727991 1570.080.4
Bi23.55198.1146.5228.3144.61470.030.5
Mo40.44120.379.16156.564.2679.160.04bdl
W0.230.750.441.010.390.440.05bdl
Co/Ni比值4314151815154.0
δ34S值6.36.16.86.66.16.36.4~8.9

Fig.5

Variation range of LA-ICP-MS trace elements in colloidal pyrite"

Fig.6

LA-ICP-MS area scanning maps of colloidal pyrite"

Fig.7

Variation range of δ34S values in colloidal pyrite"

Bao Z A, Chen L, Zong C L, al et,2017. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS[J].International Journal of Mass Spectrometry,421:255-262.
Barbour K M,1961. The Republic of the Sudan:A Regional Geography[M].London:University of London Press.
Belcher R W, Rozendaal A, Przybylowicz W J,2004. Trace element zoning in pyrite determined by PIXE elemental mapping:Evidence for varying ore-fluid composition and electrochemical precipitation of gold at the Spitskop deposit,Saldania Belt,South Africa[J].X-Ray Spectrom,33(3):174-180.
Butler I B, Rickard D,2000. Framboidal pyrite formation via the oxidation of iron (Ⅱ) monosulfide by hydrogen sulphide[J].Geochimica et Cosmochimica Acta,64(15):2665-2672.
Chen J J, Fu L B, Selby D, al et,2020. Multiple episodes of gold mineralization in the East Kunlun orogen,western Central Orogenic Belt,China:Constraints from Re-Os sulfide geochronology[J].Ore Geology Reviews,123:103587.
Chen Jiajie,2018.Paleozoic-Mesozoic Tectono-Magmatic Evolution and Gold Mineralization in Gouli Area,East End of East Kunlun Orogen[D].Wuhan:China University of Geosciences.
Chen L, Yuan H L, Chen K Y, al et,2019. In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit,Qinling orogenic belt,Central China[J].Journal of Asian Earth Sciences,176:325-336.
Chen N S, Sun M, Wang Q Y, al et,2007. EMP chemical ages of monazites from central zone of the eastern Kunlun orogen:Records of multi-tectonometamorphic events[J]. Chinese Science Bulletin,52(16):2252-2263.
Chen Youxin, Pei Xianzhi, Li Ruibao, al et,2013. Zircon U-Pb age,geochemical characteristics and tectonic significance of meta-volcanic rocks from Naij Tal Group,east section of East Kunlun[J].Earth Science Frontiers,20(6):240-254.
Chen Youxin, Pei Xianzhi, Li Ruibao, al et,2014.Geochemical characteristics and tectonic significance of meta-sedimentary rocks from Naij Tal group,eastern section of East Kunlun[J].Geoscience,28(3):489-500.
Clark C, Grguric B, Mumm A S,2004. Genetic implications of pyrite chemistry from the Paleoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences,northeastern South Australia[J].Ore Geology Reviews,25(3/4):237-257.
Cline J S, Hofstra A A, Muntean J L, al et,2005. Carlin-type gold deposits in Nevada:Critical geologic characteristics and viable models[C]//Economic Geology 100th Anniversary Volume.Colorado:Society of Economic Geologists: 451-484.
Craig J R, Vokes F M, Solberg T N,1998. Pyrite:physical and chemical textures[J].Mineralium Deposita,34(1):82-101.
Danyushevsky L, Robinson P, Gilbert S, al et,2011. Routnie quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS:Standard development and consideration of matrix effects[J].Geochemistry-Exploration Environment Analysis,11(1):51-60.
Deditius A P, Reich M, Kesler S E, al et,2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J].Geochimica et Cosmochimica Acta,140:644-670.
Deditius A P, Utsunomiya S, Renock D, al et,2008. A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance[J].Geochimica et Cosmochimica Acta,72:2919-2933.
Dong Y P, He D F, Sun S S, al et,2018. Subduction and accretionary tectonics of the East Kunlun orogen,western segment of the Central China orogenic system[J].Earth-Science Reviews,186:231-261.
Fan Likun, Cai Yanping, Liang Haichuan, al et,2009. Characters and evolution of the geodynamics in the eastern Kunlun[J].Geological Survey and Research,33(3):181-186.
Feng Chengyou, Zhang Dequan, Wang Fuchun, al et,2004. Geochemical study on ore-forming fluid of gold (antimony) deposit in East Kunlun orogenic gold deposit,Qinghai Province[J].Acta Geoscientica Sinica,20(4):949-960.
Feng Shouzhong,2003. The types and major control factors of deposit with by product gold in China[J].Contributions to Geology and Mineral Resources Research,18(3):168-172.
Fougerouse D, Reddy S M, Saxey D W, al et,2016. Nanoscale Au clusters in arsenopyrite controlled by growth rate not concentration:Evidence from atom probe microscopy[J].American Mineralogist,101 (8):1916-1919.
Gopon P, Douglas J O, Auger M A, al et,2019. A nanoscale investigation of Carlin-type gold deposits:An atom-scale elemental and isotopic perspective[J].Economic Geology and the Bulletin of the Society of Economic Geologists,114(6):1123-1133.
He D F, Dong Y P, Liu X M, al et,2016. Tectono-thermal events in East Kunlun,Northern Tibetan Plateau:Evidence from zircon U-Pb geochronology[J].Gondwana Research,30:179-190.
Hofmann A,1988. Chemical differentiation of the Earth:The relationship between mantle,continental crust,and oceanic crust[J].Earth and Planetary Science Letters,90(3):297-314.
Hu S Y, Barnes S J, Glenn A M, al et,2019. Growth history of sphalerite in a modern sea floor hydrothermal chimney revealed by electron backscattered diffraction[J].Economic Geology and the Bulletin of the Society of Economic Geologists,114(1):165-176.
Jiang Chunfa, Yang Jingsui, Feng Binggui,1992. Opening-Closing Tectonics of Kunlun Mountains[M].Beijing:Geological Publishing House.
Keith M, Häckel F, Haase K M, al et,2016. Trace element systematics of pyrite from submarine hydrothermal vents[J].Ore Geology Reviews,72:728-745.
Large R R, Danyushevsky L, Hollit C, al et,2009. Gold and trace element zonation in pyrite using a laser imaging technique:Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J].Economic Geology,220(5):635-668.
Li Bile, Shen Xin, Chen Guangjun, al et,2012.Geochemical features of ore-forming fluids and metallogenesis of vein I in Asiha gold ore deposit,Eastern Kunlun,Qinghai province[J].Journal of Jilin University(Earth Science Edition),42(6):1676-1687.
Li Jinchao,2017. Metallogenic Regularity and Metallogenic Prognosis of Gold Deposit in the East Kunlun Orogen,Qinghai Province[D].Xi’an:Chang’an University.
Li X H, Fan H R, Yang K F, al et,2018. Pyrite textures and compositions from the Zhuangzi Au deposit,southeastern Nor-th China Craton:Implication for ore-forming processes[J].Contributions to Mineralogy and Petrology,173(9):73.
Liang G Z, Yang K F, Sun W Q, al et,2021. Multistage ore-forming processes and metal source recorded in texture and composition of pyrite from the Late Triassic Asiha gold deposit, Eastern Kunlun orogenic belt, western China[J]. Journal of Asian Earth Sciences,220:104920.
Liu Y, Hu Z, Gao S, al et,2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,257(1/2):34-43.
Loftus-Hills G, Solomon M,1967. Cobalt,nickel and selenium in sulphides as indicators of ore genesis[J].Mineralium Deposita,2:228-242.
Madyagan L, Franchini M, Lentz D R, al et,2013. Sulfide composition and isotopic signature of the Altar Cu-Au deposit,Argentina:Constraints on the evolution of the porphyryepithermal system[J].Canadian Mineralogist,51(6):813-840.
Maslennikov V V, Maslennikova S P, Large R R, al et,2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic hosted massive sulfide deposit (Southern Urals,Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) [J].Economic Geology,104(8):1111-1141.
Migdisov A A, Zezin D, Williams-Jones A E,2011. An experimental study of Cobalt (Ⅱ) complexation in Cl- and bearing hydrothermal solutions[J].Geochimica et Cosmochimica Acta,75:4065-4079.
Millet M A, Baker J A, Payne C E,2012. Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe-58Fe double spike[J].Chemical Geology, 304/305:18-25.
Ohmoto H,1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology, 67(5):551-578.
Palme H, Jones A,2003. Solar System Abundances of the Elements[M]. Alexandria:Treatise on Geochemistry.
Peng H W, Fan H R, Liu X, al et,2021. New insights into the control of visible gold fineness and deposition:A case study of the Sanshandao gold deposit(Jiaodong,China)[J].American Mineralogist,106(1):135-149.
Price B J,1972. Minor Elements in Pyrites from the Smithers Map Area,b.c. and Exploration Applications of Minor Element Studies Doctoral Dissertation[D]. Vancouver: University of British Columbia.
Rajabpour S, Behzadi M, Jiang S Y, al et,2017. Sulfide chemistry and sulfur isotope characteristics of the Cenozoic volcanic-hosted Kuh-Pang copper deposit,Saveh county,northwestern Central Iran[J].Ore Geology Reviews,86:563-583.
Reich M, Deditius A, Chryssoulis S, al et,2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:A SIMS/EMPA trace element study[J].Geochimica et Cosmochimica Acta,104:42-62.
Reich M, Kesler S E, Utsunomiya S, al et,2005. Solubility of gold in arsenian pyrite[J].Geochimica et Cosmochimica Acta,69:2781-2796.
Ren Yunsheng, Liu Liandeng,2006.Hydrothermal colloidal pyrite in Tongling area,Anhui Province,and its metallogenic significance[J].Mineral deposits,25 (Supp.):95-98.
Ren Yunsheng, Liu Liandeng, Wan Xiangzong, al et,2004.Discussion on the metallogenic depth of skarn type gold depo-sits in tongling area,Anhui Province[J].Geotectonica et Metallogenia,28(4):397-403.
Rudnick R L, Gao S,2003. Composition of the continental crust[J].Treatise on Geochemistry,3:659.
Seal R R,2006.Sulfur isotope geochemistry of sulfide minerals[J].Reviews in Mineralogy and Geochemistry,61(1):633-677.
Simon G, Huang H, Penner-Hahn J E, al et,1999. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite[J].American Mineralogist,84(7/8):1071-1079.
Tang Yongcheng, Wu Yanchang, Chu Guozheng, al et,1998.The Geology of Copper Gold Polymetallic Deposit in the Yanjiang Area,Anhui Province[M].Beijing:Geological Publishing House.
Thomas H V, Large R R, Bull S W, al et,2011. Pyrite and pyrrhotite textures and composition in sediments,laminated quartz veins,and reefs at Bendigo gold mine,Australia:insights for ore genesis[J].Economic Geology,106(1):1-31.
Widler A M, Seward T M,2002. The adsorption of gold(Ⅰ) hydrosulphide complexes by iron sulphide surfaces[J].Geochimica et Cosmochimica Acta,66:383-402.
Wu Y F, Evans K, Hu S Y, al et,2021. Decoupling of Au and As during rapid pyrite crystallization[J].Geology,49(7):827-831.
Wu Y F, Fougerouse D, Evans K, al et,2019. Gold,arsenic,and copper zoning in pyrite:A record of fluid chemistry and growth kinetics[J].Geology,47:641-644.
Xiao Ye, Feng Chengyou, Li Daxin, al et,2014. Chronology and fluid inclusions of the Guoluolongwa gold deposit in Qinghai Province[J].Acta Geologica Sinica,88(5):895-902.
Xie Qiaoqin, Chen Tianhu, Fan Ziliang, al et,2014. Morphological characteristics and genesis of colloform pyrite in Xinqiao Fe-S deposit,Tongling,Anhui Province[J].Scientia Sinica Terrae,44(12):2665-2674.
Xu Liang, Xie Qiaoqin, Zhou Yuefei, al et,2019.Mineralogical characteristics of colloform pyrite from Tongguanshan ore field and its implications for mineralization of the stratabound sulfide deposit in Tongling mineralization cluster,Anhui Province[J].Acta Petrologica Sinica,35(12):3721-3733.
Xue Y, Campbell I, Ireland T R, al et,2013. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits[J].Geology,41:791-794.
Zhao H X, Frimmel H E, Jiang S Y, al et,2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district,China:Implications for ore genesis[J].Ore Geology Reviews,43:142-153.
Zheng Jiankang,1992. Evolution of regional tectonics in East Kunlun [J].Qinghai Geology,(1):15-25.
陈加杰,2018.东昆仑造山带东端沟里地区构造岩浆演化与金成矿[D].武汉:中国地质大学.
陈有炘,裴先治,李瑞保,等,2013.东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义[J].地学前缘,20(6):240-254.
陈有炘,裴先治,李瑞保,等,2014.东昆仑东段纳赤台岩群变沉积岩地球化学特征及构造意义[J].现代地质,28(3):489-500.
范丽琨,蔡岩萍,梁海川,等,2009.东昆仑地质构造及地球动力学演化特征[J].地质调查与研究,33(3):181-186.
丰成友,张德全,王富春,等,2004.青海东昆仑复合造山过程及典型造山型金矿地质[J].地球学报,20(4):949-960.
冯守忠,2003.中国伴生金矿床的类型及主要控矿因素[J].地质找矿论丛,18(3):168-172.
姜春发,杨经绥,冯秉贵,1992.昆仑开合构造[M].北京:地质出版社.
李碧乐,沈鑫,陈广俊,等,2012.青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J].吉林大学学报(地球科学版),42(6):1676-1687.
李金超,2017.青海东昆仑地区金矿成矿规律及成矿预测[D].西安:长安大学.
任云生,刘连登,2006.铜陵地区热液成因胶状黄铁矿及其成矿意义[J].矿床地质,25(增):95-98.
任云生,刘连登,万相宗,等,2004.铜陵地区矽卡岩型独立金矿成矿深度探讨[J].大地构造与成矿学,28(4):397-403.
唐永成,吴言昌,储国正,等,1998.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社.
肖晔,丰成友,李大新,等,2014.青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J].地质学报,88(5):895-902.
谢巧勤,陈天虎,范子良,等,2014.铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨[J].中国科学:地球科学,44(12):2665-2674.
徐亮,谢巧勤,周跃飞,等,2019.安徽铜陵矿集区铜官山矿田胶状黄铁矿矿物学特征及其对成矿作用的制约[J].岩石学报,35(12):3721-3733.
郑健康,1992.东昆仑区域构造的发展演化[J].青海地质,(1):15-25.
[1] Xiaopeng CHI,Jiayan XU,Shuiping ZHONG,Xiuhua CHEN. Research Progress of Microalloyed Gold-based Materials [J]. Gold Science and Technology, 2022, 30(1): 141-150.
[2] Yumin CHEN, Huafeng ZHANG, Congying ZHANG, Huanlong HU, Zhaokun WANG, Qingdong ZENG, Hongrui FAN. Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula [J]. Gold Science and Technology, 2019, 27(5): 637-647.
[3] Jie XIN,Wentian MI,Yuqing GUAN,Zhong XI,Xuesong ZHANG. Metallogenic Characteristics and Metallogenic Model of the Gold Deposits in Huisenwulaxi Area of Ejin Banner,Inner Mongolia [J]. Gold Science and Technology, 2018, 26(6): 718-728.
[4] QIU Hongxi,FU Guihua,XIE Lu,ZHANG Rusheng. Research on the Application of Green Chemistry Method for Analyzing Geological Gold Ore in Samples [J]. Gold Science and Technology, 2015, 23(3): 77-82.
[5] LI Yifan,LI Hongkui,TANG Qiyun,ZHUO Chuanyuan,GENG Ke,LIANG Taitao. Typomorphic Characteristics and Geological Significance of Pyrite in Jiudian Gold Deposit,Shandong Province [J]. Gold Science and Technology, 2015, 23(2): 45-50.
[6] LU Cai. Research on the Ore Characteristics and Occurrence of Gold in  Kangdenongshe Gold Polymetallic Deposit,Qinghai Province [J]. Gold Science and Technology, 2014, 22(3): 48-53.
[7] LV Ping,SUN Liangliang,LI Xuan,LIU Bo,HAO Shihe,SUN Yan,LI Shufang,CAO Zhenshuai. The Geochemical Characteristics and Prospecting Direction of Qinjiagou Poly-metallic Metallogensis,Inner Mongolia [J]. Gold Science and Technology, 2013, 21(3): 38-42.
[8] LV Xiwang,SHI Wensheng,LIU Xinhui,GAO Jinggang. Geochemical Characteristics and Genesis Significance of Jinlongshan Stibonium-Gold Deposit,Shaanxi Province [J]. J4, 2012, 20(2): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kepeng,MA Fengshan,GUO Jie,LU Rong,ZHANG Hongxun,LI Wei. Numerical Simulation of Mine Backfill and Surrounding Rock Deformation when Exploiting Sanshandao Seabed Gold Mine[J]. Gold Science and Technology, 2016, 24(4): 73 -80 .
[2] SONG Guozheng,YAN Chunming,CAO Jia,GUO Zhifeng,BAO Zhongyi,LIU Guodong,LI Shan,FAN Jiameng,LIU Caijie. Breakthrough and Significance of Exploration at Depth More than 1 000 m in Jiaojia Metallogenic Belt,Jiaodong:A Case of #br# Shaling Mining Area[J]. Gold Science and Technology, 2017, 25(3): 19 -27 .
[3] DING Jianfeng. Research on the Ore Bunker Treatment of a Gold Mine[J]. Gold Science and Technology, 2017, 25(4): 52 -57 .
[4] CHEN Qiao,YANG Hongying,CHEN Guimin,TONG Linlin,NIU Huiqun. Application of Knelson Gravity Concentration in Quartz Vein Type Gold Beneficiation Process in China[J]. Gold Science and Technology, 2017, 25(5): 73 -79 .
[5] SHAN Zhaoyong,ZHOU Fajun,ZHU Zongbo,YIN Xiaobin. Determination of Gold and Silver in Gold-loaded Carbon by Inductively Coupled Plasma-Atomic Emission Spectrometry with Fire Assay Preconcentration[J]. Gold Science and Technology, 2017, 25(6): 108 -113 .
[6] WANG Jin, GONG Fengqiang. Study On Rate Effect of Uniaxial Compression Test for Red Sandstone[J]. Gold Science and Technology, 2018, 26(1): 56 -63 .
[7] LIN Ge, GONG Fengqiang. Research on Evaluation Index of Red Sandstone Instability Under Different Stress[J]. Gold Science and Technology, 2018, 26(2): 195 -202 .
[8] SHENGJianlong, ZHAIMingyang. Reliability Analysis and Sampling Method Comparison of Jinjiling Rock Slope Based on Stochastic Response Surface Method[J]. Gold Science and Technology, 2018, 26(3): 297 -304 .
[9] LU Furan, CHEN Jianhong. Rockburst Prediction Method Based on AHP and Entropy Weight TOPSIS Model[J]. Gold Science and Technology, 2018, 26(3): 365 -371 .
[10] XIE Minxiong,LI Zhengyao,LIN Shuyong,CHI Xiaopeng,QI Chuanduo. Research on the Technology Innovation and Application of Improving Performance of Grinding System in Concentrator [J]. Gold Science and Technology, 2012, 20(6): 65 -68 .