img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (5): 637-647.doi: 10.11872/j.issn.1005-2518.2019.05.637

• Mineral Exploration and Resource Evaluation •     Next Articles

Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula

Yumin CHEN1(),Huafeng ZHANG2,Congying ZHANG2,Huanlong HU3,Zhaokun WANG1,Qingdong ZENG3,Hongrui FAN3()   

  1. 1. Shandong Gold Group Co. , Ltd. ,Jinan 250014,Shandong,China
    2. China University of Geosciences(Beijing),Beijing 100083,China
    3. Key Laboratory of Mineral Resources,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
  • Received:2019-08-22 Revised:2019-10-02 Online:2019-10-31 Published:2019-11-07
  • Contact: Hongrui FAN E-mail:chenym@sd-gold.com;fanhr@mail.iggcas.ac.cn

Abstract:

The study of genetic mineralogy of pyrite could provide the important information for the estimation of deep mineralization potential.The deep drilling (ZK96-6,2 735.70 m) at the Sanshandao gold deposit uncovered that the mineralization could still extend to the depth (-2 613 m to -2 684 m) along the Sanshandao fault zone.Therefore,this study will focus on the genetic mineralogy of pyrite from the deep drill of Sanshandao gold deposit (-2 613 m to -2 684 m),exploring the indicators of typomorphic characteristics of deep pyrite for the deep mineralization.The detailed observation was given to the geometry typomorphic characteristics of different stages of pyrites.The contents of the major and trace elements of different stages of pyrites were analyzed by electronic probe and ICP-MS,respectively.The thermoelectrometry apparatus was operated in order to explore the thermoelectric characters of all stages of pyrites.The pyrite of quartz-gold-pyrite stage in deep gold orebody shows larger grain size than pyrite in other stages, which indicates that ore-forming fluids in this stage attained the supersaturation condition and amounts of pyrite precipitated.A lot of reduced sulfur could be fixed into pyrite,which led to the destability of Au-S complexes and gold precipitation.Selected trace elements contents of pyrite in deep gold orebody (-2 613 m to -2 684 m) were drawn in the (Au+Bi+Cu+Pb+Zn)-(As+Sb+Ba+Ag+Hg)-(Ti+Cr+Co+Ni) triangle discrimination diagram,which indicates gold orebody in this location belongs to the middle part of the whole orebody and the depth still has the gold mineralization potential.The occurrence rate of P-type pyrite and the gold grade show positive correlation,which indicates that the coprecipitation of P-type pyrite and gold.This relationship could be used as the criterion for the deep prospecting of gold and also indicate the enormous potential of gold mineralization in the depth of Sanshandao gold deposit.

Key words: pyrite typomorphy, pyrite trace element, thermoelectric character of pyrite, deep gold orebody, Sanshandao gold deposit, Jiaodong Peninsula

CLC Number: 

  • P618.51

Fig. 1

Regional geological map of Jiaodong gold province[11,12]"

Fig. 2

Geological map of the Sanshandao gold field[13]"

Fig. 3

No. 96 prospecting line profile of the Sanshandao gold deposit[13]"

Fig. 4

Lithological distribution and sampling location map of ZK96-6 drill in the Sanshandao gold deposit"

Fig. 5

Microscopic observation of minerals and cores at different metallogenic stages in ZK96-6 drill of Sanshandao gold deposit"

Table 1

Characteristics of pyrite in different metallogenic stages of the ZK96-6 drill in the Sanshandao gold deposit"

成矿阶段矿石颜色发育程度黄铁矿分布状态共生矿物黄铁矿形态粒径大小/mmAu含量/(×10-6
黄铁绢英岩阶段灰白色强烈发育呈星点状、细脉状、角砾状、带状绢云母、黄铁矿立方体自形晶0.05~2.000.4~1.4
石英—金—黄铁矿阶段灰白色中等发育呈星点状、细脉状、角砾状、带状黄铁矿、石英椭圆他形晶、角砾状晶体、立方体自形晶0.02~3.001.3~18.0
石英—金—多金属硫化物阶段烟灰色发育碎裂状黄铁矿、方铅矿、硫铋铅矿碎裂状立方体0.01~0.201.8~3.4
黄铁矿—碳酸盐阶段白色发育黄铁矿较少,呈星点状碳酸盐、石英、少量黄铁矿立方体0.05~0.500.05~0.10

Table 2

Analysis results of pyrite from ZK96-6 drill by electron probe(%)"

样品编号元素含量
SeAsGeSPbBiMoFe
z2966-3-10.0020053.3050.0710.0170.05546.118
z2966-3-20.0180.014053.4400.17900.04745.613
z2966-7-100.028053.1310.16700.05845.994
z2966-7-200.056053.3500.13900.05146.361
z2966-7-300.010053 .7750.06500.06546.134
z2966-16-100.047053.5560.04000.05446.349
z2966-16-200.061052.5110.1370.0200.05446.674
z2966-28-100.088053.0670.1040.0540.04546.519
z2966-28-200.0210.02252.5400.00600.06646.681
z2966-28-300.034053.574000.06346.882
样品编号元素含量
CoAgZnCuNiAu总量
z2966-3-10.05400.01300.01099.645
z2966-3-20.048000.0080099.367
z2966-7-10.0490000.016099.443
z2966-7-20.09100000.048100.096
z2966-7-30.08100.011000100.141
z2966-16-10.0450.0220000100.113
z2966-16-20.0730.0080.0180.02000.01199.587
z2966-28-10.0640.01400.0150099.970
z2966-28-20.02600.046000.03399.441
z2966-28-30.08000.008000.0040.049100.694

Table 3

Analysis results of trace elements of pyrite from ZK96-6 drill of the Sanshandao gold deposit(×10-6)"

样品编号元素含量
LiBeScVCrCoNiCuZnGaRbSrYNbMo
Z96-6-42.0100.2083.091.544.4011238.634.427.311.243.575.10.75814.703.750
Z96-6-90.7520.3213.062.091.8320.227.01513803.7314.344.81.751.050.729
Z96-6-110.3840.1326.092.450.1313.217.780.456.83.4814.044.21.241.030.141
Z96-6-140.2470.1140.771.143.4519.919.552.823.02.8410.225.32.861.060.468
Z96-6-180.4820.0221.600.711.9513.910.815628.61.795.9522.91.230.460.575
Z96-6-250.5910.0972.271.534.7238.613.426824.32.6511.457.52.021.150.306
样品编号元素含量
CdInSbCsBaLaCePrNdSmEuGdTbDyHo
Z96-6-40.0510.0141.420.363758.314.31.656.40.960.1960.750.0760.2430.031
Z96-6-91.000.4801.850.12351825.342.44.8619.03.160.7152.410.2490.6920.065
Z96-6-110.1250.0900.7290.08760421.836.24.0614.62.290.6161.660.1740.5300.052
Z96-6-140.0530.0280.7880.07595.128.847.75.1318.42.780.5542.110.2751.1800.161
Z96-6-180.090.0871.550.04619441.669.07.4126.33.740.8432.810.2700.7260.069
Z96-6-250.0620.0360.5720.08815641.368.27.0924.43.190.5602.500.2420.7620.096
样品编号元素含量
ErTmYbLuTaWReTlPbBiThUZrHf
Z96-6-40.0910.0090.0870.0070.6421.090.0080.3581 74258.31.780.545.250.183
Z96-6-90.1890.0180.1330.0180.0870.6890.0030.2345 3482033.941.989.470.368
Z96-6-110.1460.0120.0640.0070.2340.752<0.0020.12493675.93.251.766.310.339
Z96-6-140.3910.0440.2240.0230.0521.800.0070.093698569.7814.23.460.136
Z96-6-180.1810.0060.0550.0080.1540.3850.0070.05576372.12.380.262.440.089
Z96-6-250.2990.0260.1750.0170.1230.7610.0070.082463247.150.576.480.303

Table 4

Test results of pyrite thermoelectricity from ZK96-6 drill"

样品编号标高/mP型热电系数/(μV/°C)N型热电系数/(μV/°C)P型平均出现率/%粒数/粒金品位/(×10-6
范围平均范围平均
z2966-32 613.0430.6~42.336.35-207.2~-43.9-130.644502.61
z2966-42 626.9419.3~336.9197.50-173.6~-14.3-61.3782502.55
z2966-52 627.743.7~354.6184.05-101.8~-1.8-55.0278501.84
z2966-62 628.161.7~344.3214.70-64.2~-35.6-49.9096503.47
z2966-72 629.1615.9~353.5185.70-111.1~-5.3-69.9182505.56
z2966-82 629.4753.8~352.4221.36-10.9~-1.0-110.4384505.56
z2966-92 630.425.2~352.4173.42-182.5~-3.5-79.5376501.39
z2966-102 631.525.1~318.1164.12-182.0~-31.6-103.2958502.70
z2966-112 632.768.7~333.9201.48-116.6~-5.3-57.1680503.68
z2966-122 633.463.5~336.2148.90-144.6~-1.8-54.7682501.14
z2966-132 634.461.8~340.8116.74-289.0~-8.9-129.7158500.86
z2966-142 636.3654.8~294.1155.25-1.7~-9.6-77.2570501.22
z2966-152 637.161.7~328.2176.95-15.5~-285.2-75.9574502.94
z2966-162 638.9612.7~304.0134.74-12.6~-216.1-108.9566502.53
z2966-172 640.263.4~336.7146.48-10.4~-190.9-92.38725018.75
z2966-182 640.96134.9~344.5250.52-21.3~-198.2-112.01805018.75
z2966-192 641.6813.7~343.4181.30-46.2~-96.7-76.9290504.69
z2966-202 642.685.4~353.8201.10-3.6~-158.8-58.50885016.72
z2966-212 644.1017.7~348.4159.70-20.1~-153-63.9280501.35
z2966-222 644.9015.8~337.3175.74-238.9~-8.9-79.1680501.04
z2966-232 645.671.8~351.7190.63-231.5~-25.9-97.3182500.44
z2966-242 647.368.9~324.1201.18-339.8~-5.4-145.9024504.26
z2966-252 652.0530.7~358.4208.01-313.6~-59.1-163.3868500.63
z2966-262 676.5924.6~193.0109.40-244.8~-7.2-123.1724500.10
z2966-272 684.773.4~289.487.00-211.9~-15.9-101.6430500.05
平均值2 639.62174.83-78.5068504.19

Fig.6

(Au+Bi+Cu+Pb+Zn)-(As+Sb+Ba+Ag+Hg)-(Ti+Cr+Co+Ni) of pyrite for the position discrimination of orebody[6]"

Fig.7

Comparison of Y/Ho ratio between pyrite from ZK96-6 drill at the Sanshandao gold deposit and related geological reservoir endmembers"

Fig.8

Relationship between the occurrence rate of P-type pyrite and gold grade in the ZK96-6 drill"

1 Large RossR,DanyushevskyL,HollitC,et al. Gold and trace element zonation in pyrite using a laser imaging technique:Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits [J].Economic Geology,2009,104(5):635-668.
2 高振敏,杨竹森,李红阳,等.黄铁矿载金的原因和特征[J].高校地质学报,2000,6(2):156-162.
GaoZhenmin,YangZhusen,LiHongyang,et al.Genesis and characteristics of gold hosted by pyrite[J].Geological Journal of China Universities,2000,6(2):156-162.
3 李洪梁,李光明.不同类型热液金矿床主成矿期黄铁矿成分标型特征[J].地学前缘,2019,26(3):202-210.
LiHongliang,LiGuangming.Compositional characteristics of pyrite ore formed in the main metallogenic period of various types of hydrothermal gold deposits[J].Earth Science Frontiers,2019,26(3):202-210.
4 祝洪臣,王海坡,张炯飞.内蒙古苏尼特左旗两种不同成因类型金矿[J].吉林大学学报 (地球科学版),2006,36(5):759-766.
ZhuHongchen,WangHaipo,ZhangJiongfei. Two genetic types of gold deposits in Sonid Zuoqi,Inner Mongolia[J].Journal of Jilin University(Earth Science Edition),2006,36(5):759-766.
5 江永宏,李胜荣,王吉中.云南墨江金厂金矿床黄铁矿标型特征研究[J].矿物岩石,2003,23(2):22-26.
JiangYonghong,LiShengrong,WangJizhong. The typomorphism of pyrite of Jinchang gold deposit in Mojiang County Yunnan Province[J]. Journal of Mineralogy and Petrology,2003,23(2):22-26.
6 严育通,张娜,李胜荣,等.胶东各类型金矿床黄铁矿化学成分标型特征[J].地学前缘,2013,20(3):88-93.
YanYutong,ZhangNa,LiShengrong,et al.Compositional typomorphic characteristics of pyrite in each type of gold deposit of Jiaodong[J].Earth Science Frontiers,2013,20(3):88-93.
7 申俊峰,李胜荣,马广钢,等.玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J].地学前缘,2013,20(3):55-75.
ShenJunfeng,LiShengrong,MaGuanggang,et al.Typomorphic characteristics of pyrite from the Linglong gold deposit:Its vertical variation and prospecting significance[J]. Earth Science Frontiers,2013,20(3):55-75.
8 FengK,FanH R,HuF F,et al. Involvement of anomalously As-Au-rich fluids in the mineralization of the Heilangou gold deposit,Jiaodong,China:Evidence from trace element mapping and in-situ sulfur isotope composition[J].Journal of Asian Earth Sciences,2018,160:304-321.
9 LiX H,FanH R,YangK F,et al. Pyrite textures and compositions from the Zhuangzi Au deposit,southeastern North China Craton:Implication for ore-forming processes [J]. Contributions to Mineralogy and Petrology,2018,173:73.
10 YangK F,FanH R,SantoshM,et al.Reactivation of the Archean lower crust:Implications for zircon geochronology,elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton [J]. Lithos,2012,146/147:112-127.
11 范宏瑞,胡芳芳,杨进辉,等.胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J].岩石学报,2005,21(5):1317-1328.
FanHongrui,HuFangfang,YangJinhui,et al. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong Province[J]. Acta Petrologica Sinica,2005,21(5):1317-1328.
12 胡换龙,范宏瑞.水/岩相互作用对焦家金矿金成色的影响[J].黄金科学技术,2018,26(5):559-569.
HuHuanlong,FanHongrui.The effect of water/rock interaction for the gold fineness of Jiaojia gold deposit[J].Gold Science and Technology,2018,26(5):559-569.
13 WenB J,FanH R,HuF F,et al. Fluid evolution and ore genesis of the giant Sanshandao gold deposit,Jiaodong gold province,China:Constrains from geology,fluid inclusions and H-O-S-He-Ar isotopic compositions[J]. Journal of Geochemical Exploration,2016,171:96-112.
14 FanH R,ZhaiM G,XieY H,et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China[J]. Mineralium Deposita,2003,38:739-750.
15 LiX C,FanH R,SantoshM,et al. Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China [J]. Ore Geology Reviews,2013,53:403-421.
16 陈光远,孙岱生,张立,等.黄铁矿成因形态学[J].现代地质,1987,1(1):60-76.
ChenGuangyuan,SunDaisheng,ZhangLi,et al.Morphogenesis of pyrite[J].Geoscience,1987,1(1):60-76.
17 李楠,杨立强,张闯,等.西秦岭阳山金矿带硫同位素特征:成矿环境与物质来源约束[J].岩石学报,2012,28(5):1577-1587.
LiNan,YangLiqiang,ZhangChuang,et al.Sulfur isotope characteristics of the Yangshan gold belt,west Qinling:Constraints on ore-forming environment and material source[J].Acta Petrologica Sinica,2012,28(5):1577-1587.
18 Mikucki EdwardJ. Hydrothermal transport and depositional processes in Archean lode-gold systems:A review [J]. Ore Geology Reviews,1998,13(1/2/3/4/5):307-321.
19 肖化云,吴学益.高温高压高应变速率干体系中黄铁矿内的晶格金的动力迁移机制理论探讨[J].地质地球化学,1999,27(2):114-119.
XiaoHuayun,WuXueyi. Dynamic transport mechanisim of lattice gold in pyrite at high temperature-high pressure anhydrous conditions and at high stain rate[J].Geology-Geochemistry,1999,27(2):114-119.
20 迟清华,鄢明才.应用地球化学元素丰度数据手册[M].北京:地质出版,2007:8-114.
ChiQinghua,YanMingcai. The Data Handbook of Chemical Elements Abundance of Applied Geochemistry [M]. Beingjing:Geological Publishing House,2007:8-114.
[1] Xiaoping ZHOU, Mingchun SONG, Xiangdong LIU, Chunming YAN, Zhaojun HU, Haigang SU, Bingqian HU, Yikang ZHOU. Formation Age,Petrogenesis,and Implications for Gold Mineralization of Giant Porphyritic Granite in the Sanshandao Gold Deposit in Jiaodong [J]. Gold Science and Technology, 2024, 32(5): 813-829.
[2] Bin WANG, Mingchun SONG, Zhining LIU, Jian LI, Leilei DONG, Yiduo ZHANG, Lei JIANG, Runsheng WANG, Xiaotao DONG, Jialiang LIU. Geochronology,Geochemical Characteristics and Tectonic Implications of Early Cretaceous Zhouguan High-Mg Diorite Rock Mass in the Jiaodong Peninsula [J]. Gold Science and Technology, 2024, 32(5): 798-812.
[3] Jian LI, Mingchun SONG, Changwei WANG, Runsheng WANG, Ming LEI, Qingyi CUI, Jie LI, Shiyong Li. Exploration Indicators of Altered Minerals of Gold Deposits in the Sanshandao Fault Zone,Jiaodong Peninsula [J]. Gold Science and Technology, 2024, 32(5): 749-767.
[4] Bing YU, Zhengjiang DING, Weijun CHEN, Xiao LI, Caijie LIU, Jianling XUE, Qingdong ZENG, Hongrui FAN, Jinjian WU, Qibin ZHANG. Thermoelectric Characteristics of Pyrite from the Xiling Gold Deposit in Jiaodong Peninsula and Its Implications for Deep Prospecting [J]. Gold Science and Technology, 2024, 32(2): 207-219.
[5] Wei LI,Fengshan MA,Xiangpeng LU,Jiayuan CAO,Jie GUO. Analysis of Geological Structure of Submarine Mining Area Based on 3D Seismic Exploration [J]. Gold Science and Technology, 2019, 27(4): 530-538.
[6] WANG Zhenjun,LI Weiming,YUAN Bo. Features of Structural Superimposed Halos in Sanshandao-Xinli-Cangshang Gold Deposits,Shandong Province [J]. Gold Science and Technology, 2013, 21(4): 48-53.
[7] ZHOU Guofa,LV Guxian,SHEN Yuke,GUO Tao,LI Wei. Discussion on the Geological Characteristics and Prospecting Forecast of Sanshandao Gold Deposit,Shandong Province [J]. J4, 2011, 19(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!