img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (6): 923-934.doi: 10.11872/j.issn.1005-2518.2022.06.126

• 采选技术与矿山管理 • 上一篇    下一篇

基于声发射的倾斜软硬互层岩石破坏特性研究

周可凡(),刘科伟(),郭腾飞   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2022-09-21 修回日期:2022-10-30 出版日期:2022-12-31 发布日期:2023-01-06
  • 通讯作者: 刘科伟 E-mail:Zkf52598@163.com;Kewei_liu@126.com
  • 作者简介:周可凡(1998-),男,安徽安庆人,硕士研究生,从事岩石破坏机理研究工作。Zkf52598@163.com
  • 基金资助:
    国家自然科学基金项目“深部高应力岩体环境深孔一次爆破成井机理与方法研究”(51974360)

Study on Failure Characteristics of Inclined Soft and Hard Interbedded Rocks Based on Acoustic Emission

Kefan ZHOU(),Kewei LIU(),Tengfei GUO   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2022-09-21 Revised:2022-10-30 Online:2022-12-31 Published:2023-01-06
  • Contact: Kewei LIU E-mail:Zkf52598@163.com;Kewei_liu@126.com

摘要:

为研究深部矿井中常见的软硬互层岩石的破坏特性,结合声发射技术对红砂岩和混凝土组合的软硬互层岩石试样进行了单轴压缩试验。对单轴压缩试验现象和数据进行分析,对试样的破坏模式进行了分类,给出了软硬互层岩石峰值抗压强度随软层倾角变化的N型曲线。对声发射数据进行分析,结果表明:(1)软层倾角大小对软硬互层岩石的稳定性有显著影响;(2)软硬互层岩石软层倾角增大时,更容易诱导裂纹密集生成从而导致失稳破坏;(3)软硬互层岩石发生失稳扩展的频次随着倾角的增加呈现先增加后减少再增加的规律;(4)随着倾角的增大,剪切裂纹占比呈现先增加后降低再增加的规律。

关键词: 层状岩石, 软硬互层, 声发射, b值, 裂纹扩展, AF-RA

Abstract:

With the economic development,people’s demand for deep resource mining is increasing day by day.Underground projects are more and more frequently carried out in deep,and deep mining of metal mines has gradually become the norm.Soft and hard interbedded rocks generally exist in deep mines.Compared with ordinary rocks,they are more prone to destabilization and failure under disturbance and stress.Therefore,it is of great significance to study the failure characteristics of soft and hard interbedded rocks.In this paper,combined with acoustic emission technology,uniaxial compression tests were carried out on the soft and hard interbedded rock samples with dip angle composed of red sandstone and concrete,and the collected acoustic emission data,such as acoustic emission number,acoustic emission rate,b value,AF-RA value,were processed and analyzed.The conclusions are as follows:(1)According to the influence of dip angle on the failure mode of soft and hard interbedded rock,it can be divided into four categories,namely axial failure,soft layer failure,interface slip and Splitting failure.(2)When the dip angle of soft and hard interbedded rocks changes from 0 ° to 90 °,the peak compressive strength curve presents a N-shaped change.(3)Based on the classification method of rock failure process proposed by Boyce and the cumulative acoustic emission number,the failure process of soft and hard interbedded rocks with different dip angles is classified.(4)The dip angle of the soft layer has a significant influence on the stability of the rock.(5)When the dip angle of the soft layer increases,the area with high acoustic emission rate will move backward and narrow,and the cracks are more likely to occur intensively,leading to instability and failure.(6)In the process of uniaxial compression,the state of instability propagation is affected by the inclination angle,which increases first,then decreases,and then increases with the increase of the inclination angle.(7) With the increase of the dip angle,the proportion of shear cracks in the failure process of soft and hard interbedded rocks increases first,then decreases,and then increases again.The research results can provide reference for solving the engineering problems of soft and hard interbedded rocks.

Key words: layered rock, soft and hard interbedding, acoustic emission, b value, crack propagation, AF-RA value

中图分类号: 

  • TU457

图1

倾角从0°到90°的软硬互层试样"

表1

混凝土与岩石的力学性能"

材料样品编号抗压强度/MPa密度/(g·cm-3)泊松比弹性模量/GPa
混凝土concrete-1392.020.2532.70
concrete-2432.130.2832.02
concrete-3422.070.2732.55
红砂岩red sandstone-1552.420.2036.20
red sandstone-2552.440.2037.00
red sandstone-3572.450.2137.20

表2

声发射仪器的参数设置"

参数数值
门槛值/dB40
前置增益/dB40
采样长度/kB5
采样频率/MHz10
PDT/μs50
HLT/μs300
HDT/μs200

图2

试验装置示意图"

图3

不同倾角试样试验中的破坏结果和破坏模式分类示意图"

表3

试样基本信息"

试样编号θ/(°)软层厚度/mm抗压强度/MPa破坏模式
A-1019.7042.19轴向破坏
A-2020.0743.80轴向破坏
A-3019.9737.01轴向破坏
B-122.520.0752.29软层破坏
B-222.520.1746.96软层破坏
B-322.519.8549.80软层破坏
C-14519.782.85界面滑移
C-24519.921.39界面滑移
C-34520.232.90界面滑移
D-167.519.922.60界面滑移
D-267.519.892.12界面滑移
D-367.519.352.55界面滑移
E-19019.8854.12劈裂破坏
E-29020.0349.28劈裂破坏
E-39019.7457.49劈裂破坏

图4

试样单轴抗压强度随软层倾角变化图"

图5

Mohr-Coulomb破坏准则示意图"

图6

岩石加载过程累计声发射数曲线图"

图7

不同倾角下应力、累计声发射数和声发射率曲线图及加载过程分段图"

表4

含不同倾角试样在加载过程中出现的破坏阶段"

θ/(°)破坏阶段
0裂纹闭合,线弹性变形,裂纹非稳定扩展
22.5裂纹闭合,裂纹稳定扩展,裂纹非稳定扩展
45裂纹闭合,裂纹稳定扩展,裂纹非稳定扩展
67.5裂纹闭合,裂纹稳定扩展,裂纹非稳定扩展
90裂纹闭合,线弹性变形,裂纹稳定扩展,裂纹非稳定扩展

图8

不同软层倾角下的b值—应力曲线"

图9

声发射参数"

图10

AF-RA裂纹分类图"

图11

不同倾角下AF-RA值密度分布"

图12

不同C0值对应剪切裂纹占比随倾角的变化趋势"

Boyce G M, McCabe W M, Koerner R M,1981.Acoustic emission signatures of various rock types in unconfined compression[J].ASTM Special Technical Publications,(750):142-154.
Chang X, Lu J, Wang S,et al,2018.Mechanical performances of rock-concrete bi-material disks under diametrical compression[J].International Journal of Rock Mechanics and Mining Sciences,104:71-77.
Cho J, kim H, Jeon S,et al,2012.Deformation and strength anisotropy of Asan gneiss,Boryeong shale,and Yeoncheon schist[J].International Journal of Rock Mechanics and Mining Sciences,50:158-169.
Duveau G, Shao J F,1998.A modified single plane of weakness theory for the failure of highly stratified rocks[J].International Journal of Rock Mechanics and Mining Sciences,35(6):807-813.
Farhidzadeh A, Salamone S, Singla P,2013 .A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures[J].Journal of Intelligent Material Systems & Structures,24(14):1722-1735.
Feng G L, Chen B R, Jiang Q,2021.Excavation-induced microseismicity and rockburst occurrence:Similarities and differences between deep parallel tunnels with alternating soft-hard strata[J].Journal of Central South University,28(2):582-594.
Feng W, Huang R, Li T,2012.Deformation analysis of a soft-hard rock contact zone surrounding a tunnel[J].Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research,32:190-197.
Ge Zhenlong, Sun Qiang, Wang Miaomiao,et al,2021 .Fracture feature recognition of sandstone after high temperature based on RA/AF[J].Coal Geology & Exploration,49(2):176-183.
Gholami R, Rasouli V,2014.Mechanical and elastic properties of transversely isotropic slate[J].Rock Mechanics and Rock Engineering,47(5):1763-1773.
Gutenberg B, Richter C F,1994.Frequency of earthquakes in California[J].Bulletin of the Seismological Society of America,34(4):185-188.
Jaeger J C,1960.Shear failure of anisotropic rocks[J].Geological Magazine,97(1):62-72.
Jaeger J C, Cook N G W,1981.Fundamentals of Rock Mechanics[M].Beijing:Science Press.
Li Haoran, Wang Ziheng, Meng Shirong,et al,2021.Acoustic emission activity and damage evolution characteristics of marble under triaxial stress at high temperatures[J].Rock and Soil Mechanics,42(10):2672-2682.
Li Xibing,Zhou Jian,Wang Shaofeng, et al,2017 Review and practice of deep mining for solid mineral resources[J].The Chinese Journal of Nonferrous Metals,27(6):1236-1262.
Li Yuanhui, Liu Jianpo, Zhao Xingdong,et al,2009 .Study on b-value and fractal dimension of acoustic emission during rock failure process[J].Rock and Soil Mechanics,30(9):2559-2563,2574.
Liu Shengli, Chen Shanxiong, Yu Fei,et al,2012.Anisotropic properties study of chlorite schist[J].Rock and Soil Mechanics,33(12):3616-3623.
Liu X L, Han M S, He W,et al,2020.A new b value estimation method in rock acoustic emission testing[J].Journal of Geophysical Research:Solid Earth,125(12):1-14.
Liu Xiling, Liu Zhou, Li Xibing,et al,2019.Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load[J].Chinese Journal of Engineering,41(11):1422-1432.
Liu Yunsi, Fu Helin, Rao Junying,et al,2012.Research on brazilian disc splitting tests for anisotropy of slate under influence of different bedding orientations[J].Chinese Journal of Rock Mechanics and Engineering,31(4):785-791.
Mokhtari M, Tutuncu A N,2016.Impact of laminations and natural fractures on rock failure in Brazilian experiments:A case study on Green River and Niobrara formations[J].Journal of Natural Gas Science & Engineering,36:79-86.
Ramamurthy T,1993.Strength and modulus responses of anisotropic rocks[J].Comprehensive Rock Engineering,1(1):313-329.
Selcuk L,2019.Experimental investigation of the rock-concrete bi materials influence of inclined interface on strength and failure behavior[J].International Journal of Rock Mechanics and Mining Sciences,23(1/2/3):1-11.
Tien Y M, Kuo M C, Juang C H,2006.An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J].International Journal of Rock Mechanics and Mining Sciences,43(8):1163-1181.
US-ASTM,2000. Standard test method for unconfined strength of intact rock core specimens: [S].West Conshohocken:US-ASTM.
Winn K, Wong L, Alejano L R,2019.Multi-approach stability analyses of large caverns excavated in low-angled bedded sedimentary rock masses in Singapore[J].Engineering Geology,259:105164.
Wu Q, Jiang Y, Tang H,et al,2020.Experimental and numerical studies on the evolution of shear behaviour and damage of natural discontinuities at the interface between different rock types[J].Rock Mechanics and Rock Engineering,53(8):3721-3744.
Xu G W, He C, Lu D Y,et al,2019.The influence of longitudinal crack on mechanical behavior of shield tunnel lining in soft-hard composite strata[J].Thin-Walled Structures,144:106282..
Yang J C, Liu K W, Li X D,et al,2020.Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress[J].Journal of Central South University,27(10):3149-3162.
Yang J, Chen W, Zhao W,et al,2017.Geohazards of tunnel excavation in interbedded layers under high in situ stress[J].Engineering Geology,230 :11-22.
Yang S Q, Miao C, Gang F,et al,2018.Physical experiment and numerical modelling of tunnel excavation in slanted upper-soft and lower-hard strata[J].Tunnelling and Underground Space Technology,82:248-264.
Yang S Q, Tao Y, Xu P,et al,2019. Large-scale model experiment and numerical simulation on convergence deformation of tunnel excavating in composite strata[J].Tunnelling and Underground Space Technology,94:103133.
Yeh P T, Lee Z Z, Chang K T,2020.3D Effects of permeability and strength anisotropy on the stability of weakly cemented rock slopes subjected to rainfall infiltration[J].Engineering Geology,266:105459.
Zhang Q, Fan X, Chen P,et al,2020.Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration[J].Engineering Geology,269(3):105547.
Zhao Z H, Wang W M, Dai C Q,et al,2014.Failure characteristics of three-body model composed of rock and coal with different strength and stiffness[J].Transactions of Nonferrous Metals Society of China,24(5):1538-1546.
葛振龙,孙强,王苗苗,等,2021.基于RA/AF的高温后砂岩破裂特征识别研究[J].煤田地质与勘探,49(2):176-183.
李浩然,王子恒,孟世荣,等,2021.高温三轴应力下大理岩损伤演化与声发射活动特征研究[J].岩土力学,42(10):2672-2682.
李夕兵,周健,王少锋,等,2017.深部固体资源开采评述与探索[J].中国有色金属学报,27(6):1236-1262.
李元辉,刘建坡,赵兴东,等,2009.岩石破裂过程中的声发射b值及分形特征研究[J].岩土力学,30(9):2559-2563,2574.
刘胜利,陈善雄,余飞,等,2012.绿泥石片岩各向异性特性研究[J].岩土力学,33(12):3616-3623.
刘希灵,刘周,李夕兵,等,2019.劈裂荷载下的岩石声发射及微观破裂特性[J].工程科学学报,41(11):1422-1432.
刘运思,傅鹤林,饶军应,等,2012.不同层理方位影响下板岩各向异性巴西圆盘劈裂试验研究[J].岩石力学与工程学报,31(4):785-791.
[1] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[2] 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112.
[3] 黄晓辉,刘科伟,周占星,马泗洲,郭腾飞. 高温后红砂岩压剪下声发射及其微观特性研究[J]. 黄金科学技术, 2022, 30(5): 764-777.
[4] 李明兼,尹土兵,谭小松,杨政. 基于离散元的花岗岩热敏感性及裂纹扩展研究[J]. 黄金科学技术, 2022, 30(4): 559-573.
[5] 郑雨晴,陈勇,王进华,尚雪义,刘彩云. 联合改进作用距离和Dijkstra算法的复杂结构声发射定位方法及应用[J]. 黄金科学技术, 2022, 30(3): 427-437.
[6] 谢学斌, 刘涛, 张欢. 基于改进CEEMDAN-DCNN的声发射源识别分类方法[J]. 黄金科学技术, 2022, 30(2): 209-221.
[7] 曾强,黄小荣,王晓军,陈青林,刘健,龚囱. 不同埋深灰岩岩爆倾向性及声发射特征试验研究[J]. 黄金科学技术, 2021, 29(6): 863-873.
[8] 卢蓉,马凤山,赵杰,郭捷,顾金钟,黄业强. 充填体室内单轴压缩试验声发射指标特性分析[J]. 黄金科学技术, 2021, 29(2): 218-225.
[9] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[10] 郭婧宇,蒲成志,贺桂成,李益龙,杨少峰,曾佳君. 静态—准静态加载下含裂隙类岩材料破断试验及声发射特性分析[J]. 黄金科学技术, 2020, 28(6): 877-884.
[11] 马春德, 刘泽霖, 谢伟斌, 魏新傲, 赵新浩, 龙珊. 套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究[J]. 黄金科学技术, 2020, 28(3): 401-410.
[12] 张栩栩,杨仕教,曾佳君,罗可,蒲成志. 含预制缺陷类岩体模型破断试验与分析[J]. 黄金科学技术, 2020, 28(2): 255-263.
[13] 曾晟,王少平,张妮. 冲击荷载下岩石裂纹扩展研究进展[J]. 黄金科学技术, 2019, 27(1): 52-62.
[14] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[15] 叶永飞,张雅楠,李士超,曹世荣,韩建文,王晓军. 循环载荷下胶结充填体损伤声发射表征[J]. 黄金科学技术, 2018, 26(6): 819-825.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!