img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (6): 863-873.doi: 10.11872/j.issn.1005-2518.2021.06.043

• 采选技术与矿山管理 • 上一篇    下一篇

不同埋深灰岩岩爆倾向性及声发射特征试验研究

曾强1,2(),黄小荣3,王晓军1,2(),陈青林1,2,刘健1,2,龚囱1,2   

  1. 1.江西理工大学资源与环境工程学院,江西 赣州 341000
    2.江西理工大学江西省矿业工程重点实验室,江西 赣州 341000
    3.江西省地质局有色一队,江西 鹰潭 335000
  • 收稿日期:2021-03-23 修回日期:2021-05-21 出版日期:2021-12-31 发布日期:2022-03-07
  • 通讯作者: 王晓军 E-mail:286405502@qq.com;xiaojun7903@126.com
  • 作者简介:曾强(1995-),男,江西赣州人,硕士研究生,从事工程岩体稳定性分析与控制等方面的研究工作。286405502@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目“渗透压力作用下岩石蠕变声发射震源主频特征及其能量机制”(51704128);江西省地质局科技计划项目“深井工程勘察地应力岩爆倾向性分析应用研究”(2021AA21)

Experimental Study on Rock Burst Tendency and Acoustic Emission Characteristics of Limestone at Different Buried Depths

Qiang ZENG1,2(),Xiaorong HUANG3,Xiaojun WANG1,2(),Qinglin CHEN1,2,Jian LIU1,2,Cong GONG1,2   

  1. 1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    2.Jiangxi Provincial Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    3.No. 1 Nonferrous Geological Team, Jiangxi Bureau of Geology, Yingtan 335000, Jiangxi, China
  • Received:2021-03-23 Revised:2021-05-21 Online:2021-12-31 Published:2022-03-07
  • Contact: Xiaojun WANG E-mail:286405502@qq.com;xiaojun7903@126.com

摘要:

通过开展不同埋深灰岩的常规单轴试验,获取灰岩破坏过程中的应力—应变曲线和声发射时域特征参数。利用弹性能量指数WET、变形脆性指数Kε和线弹性能We指标,判别不同埋深灰岩岩爆倾向性。通过分析灰岩破坏过程的声发射特征参量及其变化规律,建立了发生岩爆的前兆信息特征。结果表明:随着埋深梯度递增,岩石岩爆倾向逐级增强,当埋深达1 000 m以上时,灰岩具有强岩爆倾向;不同埋深灰岩受压破坏过程中声发射累计能量—时间变化曲线可划分为平稳、增长和破坏3个阶段,随着灰岩岩爆倾向逐级增强,岩爆破坏释放的能量越大;各埋深灰岩试样主频主要为90~180 kHz的低频带,同时中等和强岩爆倾向具有270~330 kHz高频率次主频;各埋深梯度下灰岩声发射能率分形特征与其内部裂隙演化规律具有一致性,不同埋深灰岩岩爆倾向性由弱到强的分维值演化模式按“升维—波动—降维”到“平稳—降维”演化。研究结果可为深部开采预警岩爆提供理论依据。

关键词: 岩石力学, 岩爆倾向, 声发射, 关联维数, 破裂机理

Abstract:

With the increasing demand for mineral resources,deep mining is becoming more and more popular in mines and rock burst disasters are becoming more and more frequent. Rock burst warning and prevention have become one of the major safety issues that need to be solved in the field of geotechnical engineering in the world today. The acoustic emission of rock is an effective carrier to reflect the internal damage information of rock. The study on the characteristics of acoustic emission parameters in the process of rock burst rupture and instability provides a theoretical basis for the early warning of rock burst by acoustic emission parameters in deep mining. Limestone core samples were obtained from the same borehole at different depths in a copper mine. By carrying out conventional uniaxial tests of limestone with different buried depths,the stress-strain curve and acoustic emission time-domain characteristic parameters in the limestone failure process were obtained; the elastic energy index WETdeformation brittleness index Kε and linear elastic energy Weindex were used to distinguish Limestone rock burst tendency of different buried depths; By analyzing the characteristic parameters of acoustic emission in the failure process of limestone and their changing laws,the precursor information characteristics of rock bursts were established. The results show that with the depth gradient increases,when the buried depth is more than 1 000 m,the limestone has a strong rock burst tendency.The accumulative energy-time variation curve of acoustic emission during the compressive failure of lime stones at different depths can be divided into three stages,namely,steady stage,growth stage and failure stage. The stable stage is in the initial compaction stage of limestone. As the tendency of limestone rock burst becomes stronger,the axial strain corresponding to the acoustic emission energy at this stage becomes smaller. The growth stage is the expansion stage of new fissures in the limestone rock. The cumulative acoustic emission energy changes with the depth of the burial depth and presents a “step-like”evolution to a “smooth”growth form,and the failure stage is the stage of macroscopic cracks causing rock mass destruction. In this stage,as the tendency of limestone rock burst gradually increases,the energy released by rock burst increases.The dominant frequency of each deep limestone sample is mainly the low frequency band of 90~180 kHz,while the medium and strong rock burst tendencies have a high frequency secondary frequency of 270~330 kHz.The fractal characteristics of the acoustic emission energy rate of limestone under the depth gradient are consistent with the evolution law of its internal fissures.The evolution mode of fractal dimension value of limestone rock burst tendency from weak to strong at different depths is based on “up-dimension-wave-dimension reduction”.The evolution of “steady-dimensional reduction” can provide a theoretical basis for early warning of rock burst in deep mining.

Key words: rock mechanics, rock burst tendency, acoustic emission, correlation dimension, fracture mechanism

中图分类号: 

  • TD315

图1

灰岩岩石取样示意图"

图2

岩石声发射系统示意图"

图3

不同埋深灰岩应力—应变曲线"

表1

不同埋深灰岩物理力学基本参数"

埋深/m弹性模量 /GPa抗压强度 /MPa卸载应力点 /MPa密度 /(g·cm-3孔隙率 /%
60016.3458.8851.642.6551.148
70019.9756.8450.152.7261.108
80020.8677.5066.342.7681.111
90021.01105.5590.752.7720.940
1 00022.07118.93108.642.7800.919

图4

岩石典型加卸载曲线"

表2

基于多判据的不同深度灰岩岩爆倾向结果"

埋深/m岩爆倾向判据一岩爆倾向判据二岩爆倾向判据三综合岩爆等级
弹性能量指数岩爆等级变形脆性指数岩爆等级线弹性能岩爆等级
6001.91无岩爆1.81无岩爆42.68弱岩爆无岩爆
7002.46弱岩爆2.63弱岩爆49.14弱岩爆弱岩爆
8003.95中等岩爆4.05弱岩爆101.01中等岩爆中等岩爆
9004.08中等岩爆6.38中等岩爆182.76中等岩爆中等岩爆
1 0005.28强岩爆9.71强岩爆257.91强岩爆强岩爆

图5

不同深度灰岩应力—应变和对应累计声发射能量变化图"

表3

灰岩特征强度及其占比"

埋深/m起裂强度σc2/ MPa占应力百分比/%损伤强度σc3/ MPa占应力百分比/%
60017.6129.9145.3078.23
70021.2333.3743.1775.95
80017.2631.8754.1569.88
90039.5537.4789.9785.68
1 00042.6135.7495.1179.83

图6

灰岩声发射主频随时间的变化曲线及主频分布图"

图7

相空间维数和关联维数关系曲线"

图8

灰岩声发射能率关联维数与加载应力比关系曲线"

图9

不同岩爆倾向声发射能率关联维数随加载应力比关系曲线"

null Changjiang River Scientific Research Institute of Changjiang Water Resources Commission. Standard for engineering classification of rock masses: [S].Beijing:China Planning Press,2015.
null Chen Bingrui, Wei Fanbo, Wang Rui, al et,2020.Failure mechanisms and precursory characteristics of deep buried granite in a tunnel in Southwest[J].Chinese Journal of Rock Mechanics and Engineering,39(3):469-479.
null Cong Yu, Feng Xiating, Zheng Yingren, al et,2016.Experimental study on acoustic emission failure precursors of marble under different stress paths[J].Chinese Journal of Geotechnical Engineering,38(7):1193-1201.
null Ding Xin, Xiao Xiaochun, Xiangfeng Lü, al et,2018.Investigate on the fractal characteristics and acoustic emission of coalfracture[J]. Journal of China Coal Society,43(11):3080-3087.
null Feng X Y, Yu Y, Feng G L, al et,2016.Fractal behaviour of the microseismic energy associated with immediate rockbursts in deep,hard rock tunnels[J].Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,51:98-107.
null Feng Xiating, Xiao Yaxun, Feng Guangliang, al et,2019.Study on the development process of rock bursts[J].Chinese Jo-urnal of Rock Mechanics and Engineering,38(4):649-673.
null Grassberger P, Pocaccia I,1983.Characterization of strange attractors[J].Physical Review Letters,50(5):346-349.
null Guo Jianqiang, Zhao Qing, Wang Junbao, al et,2015.Rockburst prediction based on elastic strain energy[J].Chinese Journal of Rock Mechanics and Engineering,34(9):164-171.
null Ji Hongguang, Wang Jicai, Shan Xiaoyun, al et,2001.Fractal characteristics of AE process of concrete material and application to the fracture analyses[J].Chinese Journal of Rock Mechanics and Engineering,20(6):801-804.
null Koerner R M, Mccabe W M, Lord A E,1981.Overview of acoustic emission monitoring of rock structures[J].Rock Mecha-nics and Rock Engineering,14(1):27-35.
null Li D J, Miao J L,2009. Acoustic emission and infrared characteristics of coal burst process[C]//Controlling Seismic Ha-zard & Sustainable Development of Deep Mines,Beijing:Chinese Society for Rock Mechanics & Engineering: 1341-1346.
null Liu Quansheng, Wei Lai, Lei Guangfeng, al et,2018.Experimental study on crack initiation crack damage strength and brittle parameters evaluation of sandstone[J].Chinese Jou-rnal of Geotechnical Engineering,40(10):1782-1789.
null Lu C P, Dou L M, Liu H, et a 1,2012.Case study on microseismic effect of coal and gas outburst process[J].International Journal of Rock Mechanics and Mining Sciences,53:101-110.
null Mandelbrot B B,1982.The Fractal Geometry of Nature[M].New York:W H.Freeman and Compan:25- 50.
null Niu W J, Feng X T, Xiao Y X, al et,2020.Identification of potential high-stress hazards in deep-buried hard rock tunnebased on microseismic information:a case study[J].Bulletin of Engineering Geology and the Environment,(7):1-21.
null Pei Jianliang, Liu Jianfeng, Zhang Ru, al et,2010.Fractal study on spatial distribution of acoustic emission events of granite specimens under uniaxial compression[J].Journal of Sichuan University,42(6):51-55.
null Sun H, Liu X L, Zhu J B,2019.Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading[J].International Journal of Rock Mechanics and Mining Sciences,117:1-10.
null Wang Chuangye, Chang Xinke, Liu YiLin,2018.Study on the fractal characteristics of acoustic emission sequence in the whole process of uniaxial compression fracture of different rocks[J].China Tungsten Industry,33(5):21-28.
null Wu Xianzhen, Liu Xiangxin, Liang Zhengzhao, al et,2012.Experimental study of fractal dimension of AE serials of different rocks under uniaxial compression[J].Rock and Soil Mechanics,33(12):3561-3569.
null Xiao Yaxun, Feng Xiating, Chen Bingrui, al et,2015.Evolution of frequency spectrum during instant rockbursts in deep inoculation tunnel[J].Rock and Soil Mechanics,36(4):1127-1134.
null Xu Dongqiang, Shan Xiaoyun, Zhang Yanbo,2000.Analysis of the mechanics of rock burst by rock AE and rock damage[J].Nonferrous Metals(Mining Section),(3):28-30,16.
null Xu J H, Kang Y, Liu F, al et,2021. Mechanical properties and fracture behavior of flawed granite under dynamic loading[J].Soil Dynamics and Earthquake Engineering,142:106569. .
null Yang Jian, Wang Lianjun,2005.Study on mechanish of rock burst by acoustic emission testing[J].Chinese Journal of Rock Mechanics and Engineering,24(20):3796-3796.
null Yin Xiangang, Li Shulin, Tang Haiyan,2005.Study on strength fractal features of acoustic emission in process of rock failure[J].Chinese Journal of Rock Mechanics and Engineering,24(19):114-118.
null Zhang Chuanqing, Lu Jingjing, Chen Jun, al et,2017.Discussion on rock burst proneness indexes and their relation[J].Rock and Soil Mechanics,38(5):1397-1404.
null Zhang Liming, Ren Mingyuan, Ma Shaoqiong, al et,2015.Acoustic emission and fractal characteristics of marble during unloading failure process[J].Chinese Journal of Rock Mechanics and Engineering,34(Suup.1):2862-2867.
null Zhang S W, Shou K J, Xian X F, al et,2018.Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests[J]. Tunnelling and Underground Space Technology,71(1):298-308.
null Zhao Kui, Wang Gengfeng, Wang Xiaojun, al et,2008.Research on energy distributions and fractal characteristics of Kaiser signal of acoustic emission in rock[J].Rock and Soil Mechanics,29(11):3082-3088.
null 长江水利委员会长江科学院,2015. 工程岩体分级标准: [S].北京:中国计划出版社.
null 陈炳瑞,魏凡博,王睿,等,2020.西南地区某深埋隧道花岗岩破坏机制与前兆特征研究[J].岩石力学与工程学报,39(3):469-479.
null 丛宇,冯夏庭,郑颖人,等,2016.不同应力路径大理岩声发射破坏前兆的试验研究[J].岩土工程学报,38(71):193 -1201.
null 丁鑫,肖晓春,吕祥锋,等,2018.煤体破裂分形特征与声发射规律研究[J].煤炭学报,43(11):3080-3087.
null 冯夏庭,肖亚勋,丰光亮,等,2019.岩爆孕育过程研究[J].岩石力学与工程学报,38(4):649-673.
null 郭建强,赵青,王军保,等,2015.基于弹性应变能岩爆倾向性评价方法研究[J].岩石力学与工程学报,34(9):164-171.
null 纪洪广,王基才,单晓云,等,2001.混凝土材料声发射过程分形特征及其在断裂分析中的应用[J].岩石力学与工程学报,20(6):801-804.
null 刘泉声,魏莱,雷广峰,等,2018.砂岩裂纹起裂损伤强度及脆性参数演化试验研究[J].岩土工程学报,40(10):1782-1789.
null 裴建良,刘建锋,张茹,等,2010.单轴压缩条件下花岗岩声发射事件空间分布的分维特征研究[J].四川大学学报,42(6):51-55.
null 王创业,常新科,刘沂琳,2018.不同岩石单轴压缩破裂全过程声发射序列分形特征研究[J].中国钨业,33(5):21-28.
null 吴贤振,刘祥鑫,梁正召,等,2012.不同岩石破裂全过程的声发射序列分形特征试验研究[J].岩土力学,33(12):3561-3569.
null 肖亚勋,冯夏庭,陈炳瑞,等,2015.深埋隧洞即时型岩爆孕育过程的频谱演化特征[J].岩土力学,36(4):1127-1134.
null 徐东强,单晓云,张艳博,2000.用岩石声发射与岩石损伤分析岩爆发生机制[J].有色金属(矿山部分),(3):28-30,16.
null 杨健,王连俊,2005.岩爆机理声发射试验研究[J].岩石力学与工程学报,24(20):3796-3796.
null 尹贤刚,李庶林,唐海燕,2005.岩石破坏声发射强度分形特征研究[J].岩石力学与工程学报,14(19):114-118.
null 张传庆,卢景景,陈珺,等,2017.岩爆倾向性指标及其相互关系探讨[J].岩土力学,38( 5):1397-1404.
null 张黎明,任明远,马绍琼,等,2015.大理岩卸围压破坏全过程的声发射及分形特征[J].岩石力学与工程学报,34(增1):2862-2867.
null 赵奎,王更峰,王晓军,等,2008.岩石声发射Kaiser点信号频带能量分布和分形特征研究[J].岩土力学,29(11):3082-3088.
[1] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[2] 赵国彦,党成凯,刘焕新,刘洋,肖屈日,李洋,陈立强,毛文杰. 基于距离判别分析的矿山岩爆倾向性评价[J]. 黄金科学技术, 2021, 29(5): 690-697.
[3] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
[4] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[5] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[6] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[7] 卢蓉,马凤山,赵杰,郭捷,顾金钟,黄业强. 充填体室内单轴压缩试验声发射指标特性分析[J]. 黄金科学技术, 2021, 29(2): 218-225.
[8] 邓红卫,田广林. 基于CiteSpace可视化分析下2013~2020年冻融岩石力学热点研究探析[J]. 黄金科学技术, 2021, 29(2): 275-286.
[9] 郭婧宇,蒲成志,贺桂成,李益龙,杨少峰,曾佳君. 静态—准静态加载下含裂隙类岩材料破断试验及声发射特性分析[J]. 黄金科学技术, 2020, 28(6): 877-884.
[10] 廖智勤, 王李管, 何正祥. 基于EEMD和关联维数的矿山微震信号特征提取和分类[J]. 黄金科学技术, 2020, 28(4): 585-594.
[11] 马春德, 刘泽霖, 谢伟斌, 魏新傲, 赵新浩, 龙珊. 套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究[J]. 黄金科学技术, 2020, 28(3): 401-410.
[12] 李任豪,顾合龙,李夕兵,侯奎奎,朱明德,王玺. 基于PSO-RBF神经网络模型的岩爆倾向性预测[J]. 黄金科学技术, 2020, 28(1): 134-141.
[13] 孙冰,罗瑜,谢杰辉,曾晟. N型组合节理类岩体单轴压缩破坏试验[J]. 黄金科学技术, 2019, 27(4): 548-556.
[14] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[15] 冯春迪,黄仁东. 红砂岩中矿物颗粒的塑性应变分析[J]. 黄金科学技术, 2019, 27(4): 557-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[2] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[3] 柳玉明, 柳楠, 张杰, 宋玉波, 宫隆吉, 王刚, 刘晓, 张海芳. 山东英格庄金矿床构造特征研究及找矿方向[J]. J4, 2010, 18(6): 26 -29 .
[4] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[5] 陆树林, 苏建华. 顶吹烟化法在回收铟中的应用[J]. J4, 2010, 18(4): 71 -74 .
[6] 徐忠敏,庄宇凯,栾作春. 部分正交析因法在浮选流程优化试验中的应用[J]. J4, 2008, 16(1): 7 -11 .
[7] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[8] 刘洪君, 刘喜友. 额尔古纳——呼伦深断裂带的形成发展及其对矿产的控制作用[J]. J4, 2007, 15(1): 10 -13 .
[9] 赵文川 ,彭素霞 ,李涛. 寨上金矿区矿脉产状及深部找矿前景初探[J]. J4, 2008, 16(2): 1 -4 .
[10] 伊有昌, 马财, 李月隆, 潘彤, 罗才让, 王春英. 青海省板块构造环境与成矿作用[J]. J4, 2007, 15(1): 1 -9 .