img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (1): 52-62.doi: 10.11872/j.issn.1005-2518.2019.01.052

• • 上一篇    下一篇

冲击荷载下岩石裂纹扩展研究进展

曾晟1,2,王少平2,*(),张妮2   

  1. 1. 水能资源利用关键技术湖南省重点实验室,湖南 长沙 410014
    2. 南华大学资源环境与安全工程学院,湖南 衡阳 421001
  • 收稿日期:2018-01-04 修回日期:2018-06-10 出版日期:2019-02-28 发布日期:2019-03-19
  • 通讯作者: 王少平 E-mail:18790865205@163.com
  • 作者简介:曾晟(1977-),男,湖南常德人,副教授,从事矿山岩石力学研究工作。usczengs@126.com|王少平(1991-),女,河南安阳人,硕士研究生,从事岩石动力学方面的研究工作。18790865205@163.com
  • 基金资助:
    水能资源利用关键技术湖南省重点实验室开放基金项目“荷载作用下复杂节理洞室围岩裂纹扩展及稳定性控制”(编号:PKLHD201604)和湖南省自然科学基金面上项目“冲击荷载作用下裂隙岩体裂纹扩展的分形特征”(编号:2018JJ2331)联合资助

Research Progress of Rock Crack Propagation Under Impact Loading

Sheng ZENG1,2,Shaoping WANG2,*(),Ni ZHANG2   

  1. 1. Hunan Provincial Key Laboratory of Key Technology on Hydropower Development,Changsha 410014,Hunan,China
    2. School of Resource and Environment and Safety Engineering,University of South China,Hengyang 421001,Hunan,China
  • Received:2018-01-04 Revised:2018-06-10 Online:2019-02-28 Published:2019-03-19
  • Contact: Shaoping WANG E-mail:18790865205@163.com

摘要:

为了给深部资源开采和大型地下空间工程中围岩体的变形机理及稳定性控制提供理论基础,通过查阅大量关于表征岩石裂纹扩展的裂纹扩展模型、应力强度因子和断裂韧性的国内外文献,总结了前人的研究成果。依据现有研究,提出了动荷载作用下岩石裂纹扩展的几点建议:(1)综合考虑弹性力学、断裂力学和损伤力学建立岩石材料从微观断裂到宏观破坏这一演变过程的理论模型,使理论模型更加适应岩石材料的非线性特征;(2)采用分形、自组织和混沌等非线性理论表征动荷载作用下岩石内部以及表面裂纹的扩展演化特征;(3)采用颗粒离散元和有限差分模拟岩石材料裂纹扩展演化特征。

关键词: 岩石动力学, 冲击荷载, 裂纹扩展模型, 应力强度因子, 断裂韧性

Abstract:

In the study of rock dynamic mechanical behavior,rock crack propagation model reveals the crack propagation process of rock materials under dynamic loads theoretically,and provides theoretical support for the failure law of rock materials under dynamic loads.Rock fracture toughness can be used to characterize the fracture resistance of rock materials or the resistance to produce new cracks.Especially when there are a few main cracks acting on rock materials,fracture toughness can predict fracture failure of rock materials more effectively than other strength parameters.However,stress intensity factors are used in the calculation of fracture toughness and stress field of rock materials,the description of crack propagation process and the stability evaluation of engineering rock mass.Therefore,two important parameters,stress intensity factor and fracture toughness,are indispensable for describing the crack propagation process and evaluating the stability of rock materials.In order to provide theoretical basis for deformation mechanism and stability control of the surrounding rock mass in deep resource exploitation and large underground space engineering,the previous research results are summarized by referring to a large number of domestic and foreign literatures about crack propagation models,stress intensity factors and fracture toughness that characterize rock crack propagation.From the existing research results, it is concluded that the anisotropy of rock material structure leads to its non-linear characteristics.If only elastic mechanics or fracture mechanics are used to describe the failure process of rock,it will be difficult to obtain ideal results.Therefore,the damage mechanics is gradually introduced into the study of rock fracture failure.Among which,the introduction of damage mechanics is mainly due to the rise and application of non-linear science such as fractal,self-organization and chaos.Because the accuracy of stress intensity factor and fracture toughness is very important for predicting rock crack growth,the research on stress intensity factor and fracture toughness of rock mainly focuses on its testing methods or influencing factors.The testing methods of rock dynamic stress intensity factor mainly include strain gauge method,caustic method and photoelastic method,and the influencing factors mainly include stress factors and geometric factors of cracks and materials.Although there are many testing methods for rock dynamic fracture toughness,the commonly used ones are three-point bending dynamic fracture test technology,sharpy impact test method and split hopkinson pression bar (SHPB) test.The testing methods based on SHPB device can be divided into three categories,they are impact tensile dynamic fracture test,unilateral impact dynamic fracture test and central crack disc dynamic fracture test.Based on the existing research,several suggestions for rock crack propagation under dynamic load are proposed.(1)A theoretical model for the evolution process of rock material from microscopic fracture to macroscopic damage is established by comprehensively considering elastic mechanics,fracture mechanics and damage mechanics to make the theoretical model more suitable for the nonlinear characteristics of rock material;(2)Nonlinear theories such as fractal,self-organization and chaos are adopted to characterize the propagation and evolution of cracks in rock and surface under dynamic loading;(3)The crack propagation and evolution characteristics of rock materials are simulated by particle discrete element method and finite difference method.

Key words: rock dynamics mechanics, impact load, crack propagation model, stress intensity factor, fracture toughness

中图分类号: 

  • TD-0

表1

岩石裂纹动态扩展模型的优缺点及适用范围"

对比内容弹性理论模型断裂理论模型损伤理论模型

Harries

模型

Farvreau

模型

BCM模型NAG-FRAG模型K-G模型TCK模型KUS模型

Thorne等

的模型

YANG等

的模型

适用范围将岩石视为均质材料,适用于均质的、连续的、无缺陷的弹性材料将岩石视为部分均质材料,适用于裂隙周围是均匀介质的脆性材料虽然每种模型在研究岩石裂纹扩展时所采用的方法和考虑的因素不同,但每种模型均适用于任何岩石材料
优点①以准静态压力理论为基础,将复杂的岩石动态破坏问题看作是准静态二维边值介质弹性问题。②以动态拉应变为破坏依据

①以应力波理论为基础的三维弹性模型。②以动态抗拉强度为破坏准则,该模型可对岩石破碎块度进行

估算

以Griffith强度理论为基础建立裂纹扩展判据,即当裂纹长度小于临界值时是稳定的,否则,有可能扩展①以裂纹扩展的临界应力为破坏准则。②该模型主要考虑应力以及应力波引起的裂纹扩展来研究裂纹的密集度、传播情况以及损伤程度该模型认为岩石中存在数目众多的天然裂隙,且裂纹长度和条数均服从双参数的威布尔分布,同时具有各向同性的特征考虑裂纹密度、有效泊松比和有效体积模量的关系,并将损伤变量耦合到动态本构方程中,该模型可以预测岩石在体积拉伸载荷下的动态响应该模型考虑高密度微裂纹的荫屏效应和损伤引起裂纹激活率的减少,在模拟岩石性质方面更接近实际该模型基于不同的损伤变量进行定义,考虑活性裂纹数量可能引起岩石体积的变化,提高了其在大裂纹密度条件下的适应性

①裂纹的萌生与扩展取决于张拉应变,当某点的拉应变小于临界值时,原有裂纹是稳定的。

②岩石的本构关系可用弹塑性理论来解释,且服从Von Mises准则

缺点

①没有考虑岩石中裂隙、节理和断层等缺陷对应力波传播和破碎块度的影响,导致计算精度偏低。②该理论模型的均质性与岩石的非均质性差别较大,实用性

有限

同Harries模型由于该模型认为裂纹均呈水平状发育,因此仅适用于有层理和沉积类岩石,没有得到广泛的应用用一维模型解决三维问题,计算结果误差较大,没有得到广泛的应用

该模型只考虑了材料在体积拉伸状态下存在的损伤累积,认为在压缩状态下材料进入理想

状态

①原有模型仅考虑了有限裂纹密度,若要适用于一般情况,需扩大裂纹密度范围,但相关参量的获取较困难。②需考虑材料在压缩状态下引起的拉伸损伤

同TCK

模型

模型中的材料参数需由不同应变率下的最大拉伸应力试验得出,这在试验上是有困难的虽然模型的计算结果与实验结果比较吻合,但是模型中参数的确定较为困难
1 XuP,YangS Q.A fracture damage constitutive model for fissured rock mass and its experimental verification[J].Arabian Journal of Geosciences,2017,10(7):164-172.
2 ZhangZ X,KouS Q,YuJ,et al.Effects of loading rate on rock fracture[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(5):597-611.
3 姜伟,杨平,董琴.平板穿透裂纹尖端动态应力强度因子研究[J].武汉理工大学学报(交通科学与工程版),2016,46(5):820-825.
JiangWei,YangPing,DongQin.Research on dynamic stress intensity factors for through-cracked plates[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2016,46(5):820-825.
4 ZhuZ M,XuW T,FengR Q.A new method for measuring mode-I dynamic fracture toughness of rock under blasting loads[J].Experimental Techniques,2016,40(3):899-905.
5 YaoW,XuY,YuC Y,et al.A dynamic punch-through shear method for determining dynamic mode Ⅱ fracture toughness of rocks[J].Engineering Fracture Mechanics,2017,176:161-177.
6 满轲.岩石动态断裂韧性测试的失稳判据研究[J].科学技术与工程,2016,16(29):147-152.
ManKe.Research on rock unstable failure criterion of dynamic fracture toughness[J].Science Technology and Engineering,2016,16(29):147-152.
7 HarriesG.A mathematical model of cratering and blasting[C]//National Symposium on Rock Fragmentation.Adelaide:Institution of Engineers,1973:41-45.
8 FavreauR F.台阶爆破岩石位移速度[C]//第一届国际爆破破岩会议.长沙:中国长沙岩石力学工程技术咨询公司,1983:408-417.
FavreauR F.Rock displacement velocity of bench blasting[C]//The First International Blasting Rock Breaking Conference.Changsha:China Changsha Rock Mechanics Engineering Technology Consulting Company,1983:408-417.
9 MargolinL G.A generalized Griffith criterion for crack propagation [J].Engineering Fracture Mechanics,1984,19(3):539-543.
10 JohnsonB C,BowlingT J,MeloshH J.Steps toward implementing the grady-kipp fragmentation model in an Eulerian hydrocode[C]//47th Lunar and Planetary Science Conference.Houston:Lunar and Planetary Institute,2016:1-2.
11 TaylorL M,ChenE P,KuszmaulJ S.Microcrack-induced damage accumulation in brittle rock under dynamic loading[J].Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320.
12 ThorneB J,HommertP J,BrownB.Experimental and computational investigation of the fundamental mechanisms of cratering[C]//The Third International Symposium on Fragmentation by Blasting.Queensland:Proceedings of the Third International Symposium on Fragmentation by Blasting,1990.
13 YangR,BawdenW F,KatsabanisP D.A new constitutive model for blast damage[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(3):245-254.
14 祝文化,明锋,宋成梓.爆破荷载作用下岩体损伤破坏的分形研究[J].岩土力学,2011,32(10):3131-3135.
ZhuWenhua,MingFeng,SongChengzi.Fractal study of rock damage under blasting loading[J].Rock and Soil Mechanics,2011,32(10):3131-3135.
15 XieN,ZhuQ Z,XuL H,et al.A micromechanics-based elastoplastic damage model for quasi-brittle rocks[J].Computers and Geotechnics,2011,38(8):970-977.
16 GokceogluC,ZorluK.A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock[J].Engineering Applications of Artificial Intelligence,2004,17(1):61-72.
17 金解放,钟海兵,吴越,等.静载荷与循环冲击作用下岩石损伤变量定义方法的选择[J].有色金属科学与工程,2013,4(4):85-90.
JinJiefang,ZhongHaibing,WuYue,et al.Method selection for defining damage variable of rock subjected to static loadings and cyclic impacts[J].Nonferrous Metals Science and Engineering,2013,4(4):85-90.
18 李术才,许新骥,刘征宇,等.单轴压缩条件下砂岩破坏全过程电阻率与声发射响应特征及损伤演化[J].岩石力学与工程学报,2014,33(1):14-23.
LiShucai,XuXinji,LiuZhengyu,et al.Electrical resistivity and acoustic emission response characteristics and damage evolution of sandstone during whole process of uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):14-23.
19 李晓照,邵珠山.脆性岩石渐进及蠕变失效特性宏细观力学模型研究[J].岩土工程学报,2016,38(8):1391-1398.
LiXiaozhao,ShaoZhushan.Macro-micro mechanical model for progressive and creep failure of brittle rock[J].Chinese Journal of Geotechnical Engineering,2016,38(8):1391-1398.
20 陈俊桦,张家生,李新平.考虑岩体完整程度的岩石爆破损伤模型及应用[J].岩土工程学报,2016,38(5):857-866.
ChenJunye,ZhangJiasheng,LiXinping.Model of rock blasting-induced damage considering integrity of rock mass and its application[J].Chinese Journal of Geotechnical Engineering,2016,38(5):857-866.
21 孟茁超,周科平.基于拉—压损伤模型的爆破漏斗动力响应分析[J].中南大学学报(自然科学版),2012,43(7):2717-2722.
MengZhuochao,ZhouKeping.Dynamic response of blasting crater based on tension-compression damage model[J].Journal of Central South University (Science and Technology),2012,43(7):2717-2722.
22 胡英国,卢文波,陈明,等.岩石爆破损伤模型的比选与改进[J].岩土力学,2012,33(11):3278-3284.
HuYingguo,LuWenbo,ChenMing,et al.Comparison and improvement of blasting damage models for rock[J].Rock and Soil Mechanics,2012,33(11):3278-3284.
23 褚怀保,杨小林,梁为民,等.含瓦斯煤体爆破损伤模型研究[J].煤矿安全,2015,46(11):24-26.
ChuHuaibao,YangXiaolin,LiangWeimin,et al.Study on blasting damage model of coal containing gas[J].Safety in Coal Mines,2015,46(11):24-26.
24 谢和平,高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,2003,23(4):1-9.
XieHeping,GaoFeng,ZhouHongwei,et al.Fractal fracture and fragmentation in rocks[J].Journal of Disaster Prevention and Mitigation Engineering,2003,23(4):1-9.
25 尹光志,代高飞,万 玲,等.岩石微裂纹演化的分岔混沌与自组织特征[J].岩石力学与工程学报,2002,21(5):635-639.
YinGuangzhi,DaiGaofei,WanLing,et al. Characteristics of bifurcation,chaos and self-organization of evolution of micro-cracks in rock[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(5):635-639.
26 SunX Z,ShenB,LiY Y,et al.Laboratory study of three-dimensional crack propagation in rock-like material under uniaxial compression[J].Rock Mechanics and Rock Engineering,2016,49(10):1-16.
27 BungerA P,KearJ,DyskinA V,et al.Sustained acoustic emissions following tensile crack propagation in a crystalline rock[J].International Journal of Fracture,2015,193(1):87-98.
28 SahouryehE,DyskinA V,GermanovichL N.Crack growth under biaxial compression[J].Engineering Fracture Mechanics,2002,69(18):2187-2198.
29 杨永明,鞠杨,陈佳亮.劈裂荷载下孔隙岩石应力分布特征与裂纹扩展行为[J].煤炭学报,2014,39(4):658-665.
YangYongming,JuYang,ChenJialiang.Distribution properties of stress and cracks propagation behavior of porous rocks during splitting[J].Journal of China Coal Society,2014,39(4):658-665.
30 程立朝,许江,冯丹,等.岩石剪切细观开裂演化与贯通机制分析[J].岩土力学,2016,37(3):655-664.
ChengLichao,XuJiang,FengDan,et al.Analysis of mesoscopic cracking propagation and coalescence mechanisms of rocks subject to shearing[J].Rock and Soil Mechanics,2016,37(3):655-664.
31 宋义敏,何爱军,王泽军,等.冲击载荷作用下岩石动态断裂试验研究[J].岩土力学,2015,36(4):965-970.
SongYimin,HeAijun,WangZejun,et al.Experiment study of the dynamic fractures of rock under impact loading[J].Rock and Soil Mechanics,2015,36(4):965-970.
32 王蒙,朱哲明,王雄.冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究[J].岩石力学与工程学报,2016,35(7):1323-1332.
WangMeng,ZhuZheming,WangXiong.The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1323-1332.
33 李炼,杨丽萍,曹富,等.冲击加载下的砂岩动态断裂全过程的实验和分析[J].煤炭学报,2016,41(8):1912-1922.
LiLian,YangLiping,CaoFu,et al.Complete dynamic fracture process of sandstone under impact loading:Experiment and analysis[J].Journal of China Coal Society,2016,41(8):1912-1922.
34 KangY S,LiuQ S,LiuX Y,et al.Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress[J].Journal of Rock Mechanics and Geotechnical Engineering,2014,6(5):466-476.
35 HaeriH, ShahriarK, MarjiM F,et al.Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J].International Journal of Rock Mechanics and Mining Sciences,2014,67:20-28.
36 JiangM J,ChenH,CrostaG B.Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model[J].International Journal of Rock Mechanics and Mining Sciences,2015,78:175-189.
37 MotamediM G,WeedD A,FosterC D.Numerical simulation of mixed mode (Ⅰ and Ⅱ) fracture behavior of pre-cracked rock using the strong discontinuity approach[J].International Journal of Solids and Structures,2016,85/86:44-56.
38 WuZ J,WongL N Y.Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method[J].Engineering Geology,2013,162(4):1-13.
39 ArakawaK,MadaT,TakahashiK.Correlations among dynamic stress intensity factor,crack velocity and acceleration in brittle fracture[J].International Journal of Fracture,2000,105(4):311-320.
40 KobayashiA,OhtaniN,MunemuraM.Dynamic stress intensity factors during viscoelastic crack propagation at various strain rates[J].Journal of Applied Polymer Science,2010,25(12):2789-2793.
41 EvoraV M F,JainN,ShuklaA.Stress intensity factor and crack velocity relationship for polyester/TiO2 nanocomposites[J].Experimental Mechanics,2005,45(2):153-159.
42 SongC M,VrceljZ.Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method[J].Engineering Fracture Mechanics,2008,75(8):1960-1980.
43 ItouS.Effect of couple-stresses on the Mode I dynamic stress intensity factors for two equal collinear cracks in an infinite elastic medium during passage of time-harmonic stress waves[J].International Journal of Solids and Structures,2013,50(10):1597-1604.
44 HandaT,ShimadaY,KawabataT,et al.Effect of stress reflection on dynamic stress intensity factor of crack arrest toughness specimen-Study on standard test method for crack arrest toughness[C]//Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference.Busan:International Society of Offshore and Polar Engineers,2014,96(10):21-30.
45 ZhangC,GrossD.Pulse shape effects on the dynamic stress intensity factor[J].International Journal of Fracture,1992,58(1):55-75.
46 LiC,WengG J,DuanZ,et al.Dynamic stress intensity factor of a functionally graded material under antiplane shear loading[J].Acta Mechanica,2001,149(1/2/3/4):1-10.
47 MaL,LiJ,AbdelmoulaR,et al.Dynamic stress intensity factor for cracked functionally graded orthotropic medium under time-harmonic loading[J].European Journal of Mechanics,2007,26(2):325-336.
48 RokachI V.On the numerical evaluation of the anvil force for accurate dynamic stress intensity factor determination[J].Engineering Fracture Mechanics,2003,70(15):2059-2074.
49 Mykhas’kivV V,ZhbadynskyiI Y.Effect of the compliant interlayer on the dynamic stress intensity factor in a piecewise-homogeneous solid with a circular crack[J].Journal of Applied Mechanics and Technical Physics,2008,49(3):510-518.
50 KravetsV S.Influence of the shape of curvilinear cracks on the dynamic stress intensity factors[J].Materials Science,2015,50(6):792-804.
51 FowellR J,XuC,DowdP A.An update on the fracture toughness testing methods related to the cracked chevron-notched Brazilian disk (CCNBD) specimen[J].Pure and Applied Geophysics,2006,163(5/6):1047-1057.
52 杨井瑞,张财贵,周妍,等.用SCDC试样测试岩石动态断裂韧度的新方法[J].岩石力学与工程学报,2015,34(2):279-292.
YangJingrui,ZhangCaigui,ZhouYan,et al.A new method for determining dynamic fracture toughness of rock using SCDC specimens[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(2):279-292.
53 孙欣,朱哲明,谢凌志,等.基于SENDB试样的砂岩复合脆性断裂行为研究[J].岩石力学与工程学报,2017,36(12):2884-2894.
SunXin,ZhuZheming,XieLingzhi,et al.Investigation on mixed-mode fracture behavior of sand stone using a SENDB specimen[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2884-2894.
54 SorochakA P,MaruschakP O,YasniyO P,et al.Evaluation of dynamic fracture toughness parameters of locomotive axle steel by instrumented Charpy impact test[J].Fatigue and Fracture of Engineering Materials and Structures,2017,40(4):512-522.
55 VisserH A,CaimmiF,PavanA.Characterising the fracture toughness of polymers at moderately high rates of loading with the use of instrumented tensile impact testing[J].Engineering Fracture Mechanics,2013,101:67-79.
56 WadaH,SeikaM,KennedyT C,et al.Investigation of loading rate and plate thickness effects on dynamic fracture toughness of PMMA[J].Engineering Fracture Mechanics,1996,54(6):805-811.
57 崔智丽,宫能平,经来旺.岩石非理想裂纹圆盘试件动态断裂韧性测试的有限元分析及试验研究[J].岩土力学,2015,36(3):694-702.
CuiZhili,GongNengping,JingLaiwang.Experiment and finite element analysis of rock dynamic fracture toughness test on nonideal crack disc specimens[J].Rock and Soil Mechanics,2015,36(3):694-702.
58 张盛,王启智.采用中心圆孔裂缝平台圆盘确定岩石的动态断裂韧度[J].岩土工程学报,2006,28(6):723-728.
ZhangSheng,WangQizhi.Method for determination of dynamic fracture toughness of rock using holed-crack flattened disk specimen[J].Chinese Journal of Geotechnical Engineering,2006,28(6):723-728.
59 冯峰,韦重耕,王启智.用中心直裂纹平台巴西圆盘测试岩石动态断裂韧度的尺寸效应[J].工程力学,2009,26(4):167-173.
FengFeng,WeiChonggeng,WangQizhi.Size effect for rock dynamic fracture toughness tested with cracked straight through flattened brazilian disc[J].Engineering Machanics,2009,26(4):167-173.
60 BackersT,StephanssonO,RybackiE. Rock fracture toughness testing in Mode Ⅱ—punch-through shear test[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):755-769.
61 ZhouY X,XiaK,LiX B,et al.Suggested methods for determining the dynamic strength parameters and mode-Ⅰ fracture toughness of rock materials[J].International Journal of Rock Mechanics and Mining Sciences,2012,49(1):105-112.
[1] 王海波, 李康强, 孙茂生, 王殿玲. DDE 通讯在黄金矿山调度监控系统中的应用[J]. 黄金科学技术, 2003, 11(5): 33-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!