img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 108-119.doi: 10.11872/j.issn.1005-2518.2021.01.093

• 采选技术与矿山管理 • 上一篇    下一篇

深部岩体水耦合爆破裂纹扩展数值模拟研究

金鹏(),刘科伟(),李旭东,杨家彩   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-05-28 修回日期:2020-09-02 出版日期:2021-02-28 发布日期:2021-03-22
  • 通讯作者: 刘科伟 E-mail:0202170106@csu.edu.cn;kewei_liu@126.com
  • 作者简介:金鹏(1990-),女,浙江湖州人,本科生,从事爆破技术和岩土工程等方面的研究工作。0202170106@csu.edu.cn
  • 基金资助:
    湖南省自然科学基金项目“爆破荷载下应力波空间变化特性与结构响应机理研究”(2018JJ3656)

Numerical Simulation Study of Crack Propagation in Deep Rock Mass Under Water-coupling Blasting

Peng JIN(),Kewei LIU(),Xudong LI,Jiacai YANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-05-28 Revised:2020-09-02 Online:2021-02-28 Published:2021-03-22
  • Contact: Kewei LIU E-mail:0202170106@csu.edu.cn;kewei_liu@126.com

摘要:

为认识深部高地应力岩体水耦合爆破裂纹扩展过程及机理,选择试验验证的RHT本构,采用LS-DYNA对水耦合装药单孔在不同原位应力场下的岩体爆破裂纹扩展进行数值分析。模拟结果表明:水耦合的方法延长了爆炸作用时间,提高了岩体中爆炸应力峰值和PPV(质点振动速度峰值),增强了爆破致裂岩体的效果;原位应力在深部岩体水耦合爆破中起到增加岩体中应力和PPV的作用。研究表明:在不同的地应力条件下,均存在某一最优水不耦合系数,且最优不耦合系数随原位应力的增加而减小,水耦合时,在原位应力为0,10,20,30,40 MPa的条件下,最优不耦系数分别为5.00、3.30、2.63、1.56和1.25。

关键词: 深部岩体, 地应力, 水耦合爆破, 裂纹扩展, 数值模拟

Abstract:

High in-situ stress is one of the main properties of deep rock mass.As the depth of mining,tunnel excavation,etc. increases continuously,the high in-situ stress in deep rock mass represses the effect of water-coupling blasting.Therefore,how to apply the method of water-coupling blasting in breaking deep rock mass with an aim of whether inducing considerable fracture and fragmentation of rock or obtaining the optimal economic benefit has become an essential problem in the field of blasting engineering.In order to study the mechanism of crack propagation under water-coupling blasting in deep rock mass with high in-situ stress,based on the RHT material model verified by experimental results,a series of numerical models were built and the multi-core dynamic analysis finite element software LS-DYNA was applied to simulate the crack propagation of a single hole with a water-coupling charge under different in-situ stress conditions.Numerical models were built under condition that decoupling coefficients were set to 1.11 to 10,with in-situ stress of 0,10,20,30,40 and 50 MPa.The process of crack propagation under water-coupling blasting with high in-situ stress was first analyzed,and then the influence of in-situ stress on the water-coupled blasting was investigated.A comparison of the results of rock blasting with air and water was conducted.And the rock crack evolution with different water-coupled coefficients and different ground stresses was studied.According to the simulation,the water-coupling blasting under high in-situ stress generates three damage zones,i.e. the crushed zone,the nonlinear fracture zone and the radial crack propagation zone.The water-coupling method prolongs the time of explosion and increases the peak radial stress and PPV in rock mass,and it makes the effect of rock blasting better.In-situ stress plays a role in increasing stress and PPV of rock mass under water-coupled blasting in deep rock mass,and high in-situ stress significant inhibits the rock crack propagation in radial crack propagation zone but has no much influence in crushing zone and nonlinear fracture zone.With the decrease of water-decoupling coefficient,the extent of rock fracture increases rapidly.The optimal water-decoupling coefficient exists under different in-situ stresses,by considering the utilization of explosive energy,and the optimal decoupling coefficient decreases with the increase of in-situ stress.The optimal water-decoupling coefficients at in-situ stresses of 0,10,20,30 and 40 MPa are 5.00,3.30,2.63,1.56 and 1.25,respectively.This study provides not only an analysis of the rock crack evolution under the combination of water-coupled blasting and high in-situ stress but also a reference for resolving excavation difficulties in deep rock mass.

Key words: deep rock mass, in-situ stress, water-coupling blasting, crack propagation, numerical simulation

中图分类号: 

  • TD235

图1

水耦合爆生裂纹数值模型示意图"

表1

RHT岩石材料模型参数"

参数名称数值参数名称数值
密度RO/(kg·m-32 660孔隙度指数NP3.0
初始孔隙度α1.006参考压缩应变率E0C3×10-8
孔隙坍塌压力PEL/MPa172.7参考拉伸应变率E0T3×10-8
孔隙压实时压力PCO/MPa6×103破坏压缩应变率EC3×1022
Hugoniot多项式系数A1/MPa35.27×103破坏拉伸应变率ET3×1022
Hugoniot多项式系数A2/MPa39.58×103压缩应变率相关指数BETAC0.032
Hugoniot多项式系数A3/MPa9.04×103拉伸应变率相关指数BETAT0.036
EOS多项式参数B01.22PTF拉伸体积塑性应变分数0.001
EOS多项式参数B11.22压缩屈服面参数GC*0.53
EOS多项式参数T1/MPa25.7×103拉伸屈服面参数GT*0.70
EOS多项式参数T2/MPa0.0剪切模量减小因子XI0.5
弹性剪切模量SHEAR/MPa21.9×103破坏参数D10.04
抗压强度FC/MPa259破坏参数D21.00
相对抗剪强度FS*0.18最小损伤残余应变EPM0.01
相对抗拉强度FT*0.10残余面参数AF1.60
破坏面参数A1.60残余面参数AN0.61
破坏面参数N0.61Gruneisen GAMMA0.0
洛德角相关参数Q00.68侵蚀塑性应变EPSF2.0
洛德角相关参数B0.01

图2

2D水耦合爆破致裂数值验证结果(岩石材料损伤云图和切片扫描结果对比)(a)数值模拟结果;(b)试验裂纹扫描结果"

图3

深部高应力岩体水耦合爆破致裂数值模型"

图4

深部高应力岩体水耦合爆破致裂过程(Kd=2.0,σ=30 MPa)(a)压碎区;(b)压碎区、非线性破裂区以及径向裂纹区;(c)压碎区、非线性破裂区以及径向裂纹区继续发展;(d)损伤岩石单元隐藏后的裂纹扩展结果"

图5

不同地应力下水耦合爆破裂纹扩展结果(Kd=2.5)"

图6

水耦合爆破时不同静水压力下沿测线获取的径向应力峰值和PPV(Kd=2.5)"

图7

空气耦合与水耦合爆破裂纹扩展对比(σ=0 MPa,Kd=2.0)"

图8

空气耦合和水耦合爆破时间历史数据(σ=0 MPa,Kd=2.0)"

图9

水耦合和高地应力条件下不同不耦合系数对应的爆破裂纹扩展结果(σ=30 MPa)"

图10

水耦合爆破时不同不耦合系数和不同地应力条件下的爆生裂纹长度-1/Kd曲线"

图11

水耦合爆破时不同地应力下的DA-1/Kd曲线"

Banadaki M M D,2010.Stress-wave Induced Fracture in Rock Due to Explosive Action[D].Toronto:University of Toronto Ontario,Canada.
Banadaki M M D,Mohanty B,2012.Numerical simulation of stress wave induced fractures in rock[J].International Journal of Impact Engineering,40/41:16-25.
Borrvall T,Riedel W,2011.The RHT concrete model in LS-DYNA[C]//Proceedings of The 8th European LS-DYNA User Conference.Strasbourg:Strasbourg University:1-14.
Dehghan Banadaki M,Mohanty B,2008.Blast induced pressures in some granitic rocks[C]//ISRM International Symposium-5th Asian Rock Mechanics Symposium,Barcelona, Spain: Curran Associates, Inc.933-939.
Fei Honglu,Liu Yu,Qian Qifei,al et,2020.Distribution of blasthole fracture in eccentric charge under in-situ stress[J].Gold Science and Technology,28(2):228-237.
Hong Zhixian,Guo Chao,Xiong Hongwu,al et,2019.Numerical study of impact of lateral pressure coefficient on decoupling charge blasting[J].Blasting,36(3):65-75,89.
Lee E,Hornig H,Kury J,1968.Adiabatic expansion of high explosive detonation products[R]. Livermore: University of California Radiation Laboratory:1-38.
Li X D,Liu K W,Yang J C,2020.Study of the rock crack propagation induced by blasting with a decoupled charge under high in situ stress[J].Advances in Civil Engineering,2020(3):1-18.
Li Xiaohan,Liu Kewei,Yang Jiacai,al et,2019.Analysis of blasting vibration effects under different ground stress[J].Gold Science and Technology,27(2):241-247.
Lü Lei,2010.Study on deep hole water-coupling blasting to prevent rock burst technology and application[J].Zhengzhou:Henan Polytechnic University.
Ming Feng,Zhu Wenhua,Li Dongqing,2012.Application of water-couple charge blasting in tunnel excavation[J].Chinese Journal of Underground Space and Engineering,(5):124-129.
Sun Lei,Ren Qingfeng,Zong Qi,2010.Application of water-decoupled charge in smooth blasting of coal mine rock tunnel[J].Blasting,27(3):29-32.
Wang J,Yin Y,Esmaieli K,2018.Numerical simulations of rock blasting damage based on laboratory-scale experiments[J].Journal of Geophysics and Engineering,15(6):2399-2417.
Wang Sheng,2018.Numerical simulation and application of water-coupled charge based on DYNA in caving[J].Energy and Energy Conservation,(12):175-177.
Wang Z L,Li Y C,Shen R F,2007.Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion[J].International Journal of Rock Mechanics and Mining Sciences,44(5):730-738.
Wang Zhiliang,Li Yongchi,2005.Numerical simulation on effects of radial water-decoupling coefficient in engineering blast[J].Rock and Soil Mechanics,(12):1926-1930.
Xie L X,Lu W B,Zhang Q B,al et,2016.Damage evolution mechanisms of rock in deep tunnels induced by cut blasting[J].Tunnelling and Underground Space Technology,58:257-270.
Xie L X,Lu W B,Zhang Q B,al et,2017.Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J].Tunnelling and Underground Space Technology,66:19-33.
Yan Shilong,Xu Ying,2005.Numerical simulation of water-coupled charge rock blasting mechanism[J].Chinese Journal of Underground Space and Engineering,1(6):921-924.
Yi C P,Johansson D,Greberg J,2017.Effects of in-situ stresses on the fracturing of rock by blasting[J].Computers and Geotechnics,104:321-330
Zhang Mingxu,Shang Hui,2002.Study of presplitting blasting experiment in water-bearing blasthole of open pit slope[J].Nonferrous Mine,(3):8-10.
Zhu Lichen,Sun Yong,2000.Deep-hole water coupled furrow blasting[J].Blasting,6(2):67-69.
Zong Qi,Li Yongchi,Xu Ying,2004.Preliminary discussion on shock pressure on hole wall when water-couple charge blasting in the hole[J].Journal of Hydrodynamics,(5):49-54.
Zong Qi,Meng Dejun,2003.Influence of different kinds of hole charging structue on explosion energy transmission[J].Chinese Journal of Rock Mechanics and Engineering,22(4):641-641.
费鸿禄,刘雨,钱起飞,等,2020.地应力作用下偏心装药的炮孔裂隙分布[J].黄金科学技术,28(2):228-237.
洪志先,郭超,熊宏武,等,2019.侧压系数对不耦合装药爆破影响数值模拟研究[J].爆破,36(3):65-75,89.
李萧翰,刘科伟,杨家彩,等,2019.不同地应力下爆破振动效应分析[J].黄金科学技术,27(2):241-247.
吕磊,2010.深孔水耦合爆破防治冲击地压技术及应用研究[D].郑州:河南理工大学.
明锋,祝文化,李东庆,2012.水耦合装药爆破在隧道掘进中的应用[J].地下空间与工程学报,(5):124-129.
孙磊,任庆峰,宗琦,2010.水不耦合装药结构在煤矿井巷掘进光面爆破中的应用[J].爆破,27(3):29-32.
王胜,2018.基于DYNA的水耦合装药在放顶中的数值模拟应用[J].能源与节能,(12):175-177.
王志亮,李永池,2005.工程爆破中径向水不耦合系数效应数值仿真[J].岩土力学,(12):1926-1930.
颜事龙,徐颖,2005.水耦合装药爆破破岩机理的数值模拟研究[J].地下空间与工程学报,1(6):921-924.
张明旭,尚辉,2002.露天边坡含水炮孔预裂爆破试验研究[J].有色矿山,(3):8-10.
朱礼臣,孙咏,2000.深孔水耦合爆破开挖沟槽[J].工程爆破,6(2):67-69.
宗琦,李永池,徐颖,2004.炮孔水耦合装药爆破孔壁冲击压力研究[J].水动力学研究与进展,(5):49-54.
宗琦,孟德君,2003.炮孔不同装药结构对爆破能量影响的理论探讨[J].岩石力学与工程学报,22(4):641-641.
[1] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[2] 李光,马凤山,郭捷,邹龙,寇永渊. 金川二矿区地应力特征及其对巷道变形破坏的影响研究[J]. 黄金科学技术, 2021, 29(6): 817-825.
[3] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[4] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[5] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
[6] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[7] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[8] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[9] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[10] 谢学斌,高山,过江,叶永飞. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021, 29(2): 226-235.
[11] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[12] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[13] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[14] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[15] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[2] 陈生民. 祁连山地区钨矿特征及找矿前景分析[J]. J4, 2007, 15(2): 26 -35 .
[3] 冯肇伍. 高砷高硫金精矿细菌氧化——氰化提金试验研究[J]. J4, 2003, 11(4): 12 -16 .
[4] 刘显凡,倪师军,卢秋霞,金景福,朱赖民. 微细浸染型金矿成矿物源的硅同位素地球化学示踪——以黔西南和桂西北金矿为例[J]. J4, 1998, 6(2): 18 -26 .
[5] 魏刚锋. 滩间山金矿田韧性剪切带和金[J]. J4, 1996, 4(1): 12 .
[6] 张福祥,牛树银,刘成,张晓飞,王铮,赵莎. 胶西北焦家金矿田控矿构造分析[J]. J4, 2012, 20(2): 8 -13 .
[7] 王婷, 熊玉宝, 高小红, 李绍卿. 某高砷金矿氰化试验研究[J]. J4, 2007, 15(2): 43 -46 .
[8] 高宇梁, 刘成平, 王俊云. 鸡冠嘴与桃花嘴矿床水文地质新认识[J]. J4, 2005, 13(1-2): 10 -15 .
[9] 王金祥. 东秦岭岩金资源特征与堆浸开发[J]. J4, 1995, 3(4): 1 -9 .
[10] 温世庆. AutoCAD 在矿山测量中的应用[J]. J4, 2004, 12(3): 15 -17 .