img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (2): 218-225.doi: 10.11872/j.issn.1005-2518.2021.02.119

• 采选技术与矿山管理 • 上一篇    

充填体室内单轴压缩试验声发射指标特性分析

卢蓉1,2,3(),马凤山1,2(),赵杰3,郭捷1,2,顾金钟4,黄业强4   

  1. 1.中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    2.中国科学院地球科学研究院,北京 100029
    3.山东黄金集团有限公司深井开采实验室,山东 莱州 261400
    4.金川集团有限公司,甘肃 金昌 737100
  • 收稿日期:2020-07-06 修回日期:2020-11-18 出版日期:2021-04-30 发布日期:2021-05-28
  • 通讯作者: 马凤山 E-mail:lurongwowo@163.com;fsma@mail.iggcas.ac.cn
  • 作者简介:卢蓉(1988-),女,甘肃金昌人,博士后,从事工程地质与岩土工程研究工作。lurongwowo@163.com
  • 基金资助:
    国家自然科学基金面上项目“深部矿山胶结充填体与围岩接触带力学行为及变形机理研究”(42072305);国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293);国家自然科学基金面上项目“金属矿山地下采动引起的竖井变形破坏机理研究”(41772341)

Analysis of Acoustic Emission Index Characteristics for Indoor Uniaxial Com-pression Test of Backfill

Rong LU1,2,3(),Fengshan MA1,2(),Jie ZHAO3,Jie GUO1,2,Jinzhong GU4,Yeqiang HUANG4   

  1. 1.Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
    2.Innovation Academy for Earth Science,Chinese Academy of Sciences,Beijing 100029,China
    3.Deep Mining Laboratory of Shandong Gold Group Co. ,Ltd. ,Laizhou 261400,Shandong,China
    4.Jinchuan Group Co. ,Ltd. ,Jinchang 737100,Gansu,China
  • Received:2020-07-06 Revised:2020-11-18 Online:2021-04-30 Published:2021-05-28
  • Contact: Fengshan MA E-mail:lurongwowo@163.com;fsma@mail.iggcas.ac.cn

摘要:

随着浅部矿产资源开采殆尽,采矿活动逐渐转向深部。充填法开采作为现阶段维持矿山稳定的最有效方法,在国内外各大矿山得到了广泛应用。随着充填法的不断完善,充填体的力学行为特点引起了广泛关注。以充填体力学行为为研究对象,通过室内岩石力学试验并结合声发射监测手段,对不同倾角的预制裂隙影响下,强度在35 MPa以内的充填体试块变形破坏行为进行分析。本次共开展了5组单裂隙压缩试验,裂隙倾角分别为0°、30°、45°、60°和90°。试验结果表明:90°竖直裂隙的充填体试块脆性特点明显,而塑性程度较其他裂隙试块低;裂隙倾角对充填体变形影响很大,预制裂隙倾角较小的充填体试块整体发生拉张型破坏,而预制裂隙倾角较大的充填体试块整体呈拉剪型破坏。

关键词: 充填体, 单轴压缩, 声发射, 信号拾取, 拉张型破坏, 拉剪型破坏

Abstract:

As the shallow mineral resources exhausted,deep mining is the general trend for global mining engineering. Backfill method is widely used in metal mining engineering which control the mine stability. With the improvement of the method,the mechanical behavior of backfill is attracted extensive attention. This article analyzed backfill mechanical behavior based on the experimental test.Combined uniaxial compression tests with acoustic emission monitoring,backfill samples with pre-existing crack were tested.Five groups backfill samples were tested and all samples with strength within 35 MPa. Five groups sample with dips of 0°,30°,45°,60°,and 90°,represented five fractures distribution.The results show that backfill sample with 90°-dip fracture demonstrated more obvious brittleness and less plasticity than other samples.Acoustic emission signals could represent fractures initiation and development of backfill samples.Acoustic emission locations have their characteristics in five groups backfill samples. Initially,acoustic emission of backfill sample with 0°-dip fracture located near the pre-existing fracture,and then develop to the other parts of sample.While for backfill samples with other four dips fractures,acoustic emission mainly concentrated near the pre-existing fractures from initial stage to failure.For acoustic emission monitoring,some parameters could demonstrate the me-chanism of fractures propagation.In this article,three parameters were analyzed,they are AF,RA,and lg(AF/RA),respectively. AF represented the tensile fracture propagation,RA represented the shear fracture propagation,and lg(AF/RA) could reveal the overall fracture development.The process of backfill compression is divided into eight stages,namely crack closure,line elastic deformation,micro-crack initiation,stable micro-crack growth,micro-crack coalescence,unstable micro-crack growth,macro-crack coalescence,and failure. Finally,the results show that the dip of pre-existing crack has large influence to backfill deformation and failure according to these three parameter analysis. AE value of the backfill sample with 0°-dip fracture is high in whole deformation process,and RA value remains low and waves in small range. The change of AE and RA value showes shear and rupture in particles is not obvious,and initialed and developed fractures are major tensile.Based on this parameters changed,other four samples parameters values were analyzed,and backfill samples with 30°-dip and 45°-dip fracture are similar to backfill sample with 0°-dip fracture,and backfill samples with 60°-dip and 90°-dip fracture are different.Finally the research come to a conclusion that samples with small dips of pre-existing crack failed by tensile cracks,and samples with large dips of pre-existing crack failed by tensile-shear cracks.

Key words: backfill, uniaxial compression, acoustic emission, signal pick-up, tensile crack, tensile-shear crack

中图分类号: 

  • TD853

图1

充填体破坏现象"

图2

不同预制裂隙倾角下充填体试块破坏情况"

图3

充填体试样应力—应变曲线"

图4

含不同预制裂隙倾角的充填体变形过程中声发射监测初始定位图"

图5

含不同预制裂隙倾角的充填体变形过程中声发射监测破坏时定位图"

图6

含不同预制裂隙倾角的充填体变形过程中声发射监测AF、RA和lg(AF/RA)参数变化"

Cao Shuai,Song Weidong,Xue Gaili,al et,2015.Tests of strength reduction of cemented tailings filling considering layering character[J].Rock and Soil Mechanics,36(10):2869-2876.
Chen Bingrui,Wei Fanbo,Wang Rui,al et,2020.Failure mechanisms and precursory characteristics of deep buried granite in a tunnel in Southwest China[J].Chinese Journal of Rock Mechanics and Engineering,39(3):469-479.
Chen Shengping,Jiang Junling,Li Sinian,2003. Micro mechanical analysis of damage evolution of concrete under tension[J].Engineering Mechanics,20(5):190-193.
Cui L,Mamadou F,2015.A coupled thermos-hydro-mechanical-chemical model for underground cemented tailings backfill[J].Tunnelling and Underground Space Technology,50:396-414.
Deng Daiqiang,Yang Yaoliang,Yao Zhongliang,2007a.Rese-arch on constitutive equation of damage evolution of backfill based on the full tensile and compressive process[J].Chinese Journal of Underground Space and Engineering,23(4):485-488.
Deng Daiqiang,Yao Zhongliang,Tang Shaohui,2007b.Study on the mechanical property of backfill under split tension[J].Chinese Journal of Underground Space and Engineering,3(1):32-34.
Ercikdi B,Cihangir F,Kesimal A,al et,2009.Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings[J].Journal of Hazardous Materials,168:848-856.
Fall M,Belem T,Samb S,al et,2007.Experimental characterization of the stress-strain behavior of cemented paste backfill in compression[J].Journal of Materials Sciences,42(11):3914-3992.
Li Qiang,Mao Xianbiao,Bu Wankui,al et,2008.Mechanism of using waste-filling in roadway to control the deformation of covered rock strata[J].Journal of China University of Mining and Technology,37(6):745-750.
Li Shulin,Sang Yufa,1997.The damage mechanism and damage constitutive equation of tailings-cemented filling body[J].Gold,18(1):24-29.
Liu Zhixiang,Li Xibing,Dai Tagen,al et,2006.On damage model of cemented tailings backfill and its match with rock mass[J].Rock and Soil Mechanics,27(9):1442-1446.
Nicksiar M,Martin C D,2012.Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks[J]. Rock Mechanics Rock Engineering,45:607-617.
Peng Xianghe,Yang Chunhe,2000.The damage and its description of concrete under complex loading history[J].Chinese Journal of Rock Mechanics and Engineering,19(2):157-164.
Sheng Q Y,Yan H H,Wen L T,et al.2017.An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression [J] .Engineering Geology , 217:35-48.
Shi Xiaopeng,2015.Analysis of the impact of large-diameter longhole mine blasting on filling body to backfilling[J].Nonferrous Metals Engineering,5(Supp.1):113-115.
Song Weidong,Ren Haifeng,Cao Shuai,2016.Interaction mechanism between backfill and rock pillar under confined compression condition[J].Journal of China University of Mining and Technology,45(1):49-55.
Song Yupu,2002.Constitutive Relation and Failure Criteria of Multiple Concrete Materials[M].Beijing:China Water Po-wer Press.
Wang C,Bao T,Lu H,al et,2015.Variation regulation of the acoustic emission energy parameter during the failure process of granite under unixial compression[J].Materials Te-sting,57(9):755-760.
Wu D,Cai S J,Huang G,2014.Coupled effect of cement hydration and temperature on rheological properties of fresh cemented tailings backfill slurry[J].Transactions of Nonferrous Metals Society of China,24(9):2954-2963.
Wu Zheng,1995.Investigation of concrete tensive & compressive constitution model based on damage mechanics[J].Te-chnology of Water Resources and Hydroelectric,11:58-63.
Xie Wenbing,Shi Zhenfan,Chen Xiaoxiang,al et,2004.Analysis of surrounding rock activities in partial backfill mining[J].Journal of China University of Mining and Technology,33(2):162-165.
Xu Wenbin,Song Weidong,Wang Dongxu,al et,2014.Energy dissipation properties of cement backfill body under triaxial compression conditions[J].Journal of China University of Mining and Technology,43(5):808-814.
Zhang Bo,Li Shucai,Yang Xueying,al et,2012.Uniaxial compression tests on mechanical properties of rock mass similar material with cross-cracks [J].Rock and Soil Mechanics,33(12):3674-3679.
曹帅,宋卫东,薛改利,等,2015.考虑分层特性的尾砂胶结充填体强度折减试验研究[J].岩石力学,36(10):2869-2876.
陈炳瑞,魏凡博,王睿,等,2020.西南地区某深埋隧道花岗岩破坏机制与前兆特征研究[J].岩石力学与工程学报,39(3):469-479.
陈升平,蒋俊玲,李四年,2003.混凝土拉伸损伤演变的细观力学研究[J].工程力学,20(5):190-193.
邓代强,杨耀亮,姚中亮,2007a.拉压全过程充填体损伤演化本构方程研究[J].地下空间与工程学报,23(4):485-488.
邓代强,姚中亮,唐绍辉,2007b.单轴拉伸条件下充填体的力学性能研究[J].地下空间与工程学报,3(1):32-34.
李强,茅献彪,卜万奎,等,2008.巷道矸石充填控制覆岩变形的力学机理研究[J].中国矿业大学学报,37(6):745-750.
李庶林,桑玉发,1997.尾砂胶结充填体的破坏机理及其损伤本构方程[J].黄金,18(1):24-29.
刘志祥,李夕兵,戴塔根,等,2006.尾砂胶结充填体损失模型及与岩体的匹配分析[J].岩土力学,27(9):1442-1446.
彭向和,杨春和,2000.复杂加载史下混凝土的损伤及其描述[J].岩石力学与工程学报,19(2):157-164.
史晓鹏,2015.大直径深孔采矿爆破对充填体的影响分析[J].有色金属工程,5(增1):113-115.
宋卫东,任海锋,曹帅,2016.侧限压缩条件下充填体与岩柱相互作用机理[J].中国矿业大学学报,45(1):49-55.
宋玉普,2002.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社.
吴政,1995.基于损伤的混凝土拉压全过程本构模型研究[J].水利水电技术,11:58-63.
谢文兵,史振凡,陈晓祥,等,2004.部分充填开采围岩活动规律分析[J].中国矿业大学学报,33(2):162-165.
徐文彬,宋卫东,王东旭,等,2014.三轴压缩条件下胶结充填体能量耗散特征分析[J].中国矿业大学学报,43(5):808-814.
张波,李术才,杨学英,等,2012.含交叉裂隙岩体相似材料试件力学性能单轴压缩试验[J].岩土力学,33(12):3674-3679.
[1] 郭婧宇,蒲成志,贺桂成,李益龙,杨少峰,曾佳君. 静态—准静态加载下含裂隙类岩材料破断试验及声发射特性分析[J]. 黄金科学技术, 2020, 28(6): 877-884.
[2] 宋春辉, 李祥龙, 王建国, 宋飞. 矿柱爆破回采对胶结充填体损伤影响试验研究[J]. 黄金科学技术, 2020, 28(4): 558-564.
[3] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[4] 王程程, 罗鑫尧, 陈科旭, 戴兵, 贺桂成. 含预制裂隙类岩石裂隙演化与破裂特征的试验研究[J]. 黄金科学技术, 2020, 28(3): 421-429.
[5] 马春德, 刘泽霖, 谢伟斌, 魏新傲, 赵新浩, 龙珊. 套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究[J]. 黄金科学技术, 2020, 28(3): 401-410.
[6] 张栩栩,杨仕教,曾佳君,罗可,蒲成志. 含预制缺陷类岩体模型破断试验与分析[J]. 黄金科学技术, 2020, 28(2): 255-263.
[7] 黄照东,张德明,刘一锴,张钦礼,王浩. 柠檬酸浸法预处理对磷石膏充填体性能的影响[J]. 黄金科学技术, 2020, 28(1): 97-104.
[8] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[9] 孙冰,罗瑜,谢杰辉,曾晟. N型组合节理类岩体单轴压缩破坏试验[J]. 黄金科学技术, 2019, 27(4): 548-556.
[10] 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588.
[11] 陈昊然,曹平,冉龙威. 含齿形裂隙类岩石材料单轴压缩试验研究[J]. 黄金科学技术, 2019, 27(3): 398-405.
[12] 叶永飞,张雅楠,李士超,曹世荣,韩建文,王晓军. 循环载荷下胶结充填体损伤声发射表征[J]. 黄金科学技术, 2018, 26(6): 819-825.
[13] 史采星,郭利杰,陈鑫政. 采场充填料浆流动与离析规律的试验研究[J]. 黄金科学技术, 2018, 26(4): 520-527.
[14] 李文臣,郭利杰,陈鑫政,李宗楠,李欣. 尾砂胶结充填体三维空间强度分布相似模拟试验研究[J]. 黄金科学技术, 2018, 26(4): 528-534.
[15] 王新民, 赵茂阳, 荣帅, 王浩, 张云海. APAM对全尾砂胶结充填体早期强度影响研究[J]. 黄金科学技术, 2018, 26(3): 305-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!