img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (2): 208-217.doi: 10.11872/j.issn.1005-2518.2021.02.143

• 采选技术与矿山管理 • 上一篇    

节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟

王卫华1(),罗杰1(),刘田2,韩震宇3   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中建三局城市投资运营有限公司,湖北 武汉 430073
    3.东南大学土木工程学院,江苏 南京 210096
  • 收稿日期:2020-08-03 修回日期:2020-10-15 出版日期:2021-04-30 发布日期:2021-05-28
  • 通讯作者: 罗杰 E-mail:50973993@qq.com;954433950@qq.com
  • 作者简介:王卫华(1976-),男,湖南长沙人,教授,从事岩体动力学、爆破和安全工程研究工作。50973993@qq.com

Particle Flow Simulation on Influence of Joint Roughness Coefficient on Stress Wave Propagation and Specimens Failure

Weihua WANG1(),Jie LUO1(),Tian LIU2,Zhenyu HAN3   

  1. 1.School of Resource and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.City Investment & Operation Co. ,Ltd. ,of China Construction Third Engineering Bureau,Wuhan 430073,Hubei,China
    3.School of Civil Engineering,Southeast University,Nanjing 210096,Jiangsu,China
  • Received:2020-08-03 Revised:2020-10-15 Online:2021-04-30 Published:2021-05-28
  • Contact: Jie LUO E-mail:50973993@qq.com;954433950@qq.com

摘要:

为了研究节理粗糙度对应力波传播规律的影响以及粗糙节理试样受应力波作用发生破坏的微观机理,利用基于离散元方法的数值分析软件PFC2D构建了SHPB系统的颗粒流数值模型。在已有SHPB物理试验的基础上对试验中采用的节理试样进行微观参数标定,研究了较低冲击荷载下节理粗糙度对应力波传播的影响规律以及较高冲击荷载下不同形貌节理试样的微观裂纹扩展和破坏机理。研究表明:节理面的存在会降低应力波的透射系数,且节理面粗糙度越大,透射系数越小;冲击载荷下裂纹在节理面处萌生并迅速扩展到试样完整部分尤其是试样端面,大部分裂纹形成于峰后阶段,且张拉裂纹占主导地位;节理面越粗糙,动态强度越低,试样越容易破坏,产生的裂纹数也越多。

关键词: 分离式霍普金森压杆, 颗粒流, 数值模拟, 节理粗糙度, 应力波传播, 透射系数

Abstract:

In order to study the effect of joint roughness coefficient(JRC) on stress wave propagation and the mechanism of failure of rough joint rock specimens under stress wave action,a numerical model of particle flow code in a split Hopkinson pressure bar(SHPB) system was established by using PFC2D,a numerical analysis software based on discrete element method. Based on the existing SHPB physical test,the microcosmic parameters of joint rock specimens were demarcated. By comparing the waveforms of incidence,transmission and reflection generated by physical test and numerical simulation,the microscopic parameters were adjusted until the waveforms were basically the same,so that the correctness of the numerical model was verified. The numerical model was used to study the influence of JRC on stress wave propagation under low impact load and the microcosmic crack propagation and failure mechanism of joint rock specimens with different morphology under high impact load. In addition,the stress balance at both ends of the specimen under low impact load was analyzed by using the stress balance factor and the stress variation with time at the incident end and transmission end of the specimen. The typical stages of stress change at both ends of joint rock specimen and complete specimen in numerical impact test were compared and analyzed to explain the delayed effect of stress wave on joint surface and the effect of joint roughness on the increase of stress at the incident end. The results show that the presence of joint surface can reduce the transmission coefficient of stress wave,and the larger the JRC value of joint rock specimen is,the smaller the transmission coefficient is,and the stronger the reflected wave of the joint surface is,the more obvious the effect of stress growth slowing down at the incident end of the specimen is. Under impact load,the crack initiation occurs at the joint surface and spread rapidly to the whole part of the specimen,especially the end surface of the specimen,most of the cracks are formed in the post-peak stage,and tensile cracks are dominant. The rougher the joint surface is,the lower the dynamic strength is,the more easily the specimen is destroyed and the more cracks are produced.

Key words: SHPB, PFC, numerical simulation, JRC, stress wave propagation, transmission coefficient

中图分类号: 

  • TU455

图1

SHPB系统颗粒流模型图"

表1

SHPB系统颗粒流模型细观参数"

参数数值参数数值
颗粒半径/mm0.9~3.0切向接触刚度/(N·m-12.45×1011
孔隙率0.12颗粒密度/(kg·m-37 894.7
法向接触刚度/(N·m-16.86×1011法/切向黏结强度/MPa1×10100

图2

物理试验和数值模拟入射波比较"

表2

完整试样模型细观参数"

颗粒参数数值平行黏结参数数值
弹性模量/GPa8.0弹性模量/GPa8.0
刚度比2.0刚度比2.0
摩擦因数0.4法向强度/MPa60±5
最大半径/mm4.5切向强度/MPa48±5
最小半径/mm0.3半径乘数1.0
密度/(kg·m-32 710.4阻尼0.05

图3

完整试样的数值与物理试验波形结果对比注:σ为应力;下标s、e分别为模拟和试验波形;下标I、R、T分别为入射、反射和透射波"

表3

节理试样模型细观参数"

SJ模型参数数值
单位法向刚度/(GPa·m-11 000
单位切向刚度/(GPa·m-1500
摩擦因数0.5
抗拉强度、内聚力/MPa0

图4

节理试样的数值与物理试验波形结果对比注:σ为应力;下标s、e分别为模拟和试验波形;下标I、R、T分别为入射、反射和透射波"

图5

不同JRC值的节理试样颗粒流模型图"

图6

完整试样和节理试样两端的应力平衡图σSI-试样入射端应力;σST-试样透射端应力;η-应力平衡因子"

图7

完整试样和不同节理试样应力时间曲线图σT-透射应力;σI-入射应力;σR-反射应力"

表4

节理试样在数值冲击试验下的透射系数"

试样类别入射应力/MPa透射应力/MPa透射系数
完整试样52.1532.700.627
JRC4~652.1531.300.600
JRC8~1052.1531.020.595
JRC12~1452.1530.340.582
JRC16~1852.1529.200.560

表5

不同JRC值的节理试样裂纹数量统计"

节理试样峰值裂纹数/个最终裂纹数/个
剪切裂纹张拉裂纹总裂纹剪切裂纹

张拉

裂纹

总裂纹
JRC4~61222053274121 6382 050
JRC8~101171622794221 7562 172
JRC12~141051592644361 7732 209
JRC16~18811121934561 9212 377

图8

节理试样应力和裂纹数目随时间的变化图"

图9

不同时刻节理试样裂纹分布和力链图注:红色、黑色、绿色和蓝色短线分别表示微观张拉裂隙、微观剪切裂隙、接触压力和接触拉力,线的粗细代表力的大小"

Barton N R,Choubey V,1977.The shear strength of rock joints in theory and practice[J].Rock Mechanics and Rock Engineering,10(1):1-54.
Cundall P A,Potyondy D O,2004.A bonded-particle model for rock[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1329-1364.
Hu Wanrui,2017.Research on Mechanical Behavior of Jointed Rock mass Based on Smooth-joint Contact Model[D].Wuhan:Wuhan University.
Li D Y,Han Z Y,Zhu Q Q,al et,2019.Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles[J].International Journal of Rock Mechanics and Mining Sciences,117:162-170.
Li J C,Li N N,Li H B,al et,2017.An SHPB test study on wave propagation across rock masses with different contact area ratios of joint[J].International Journal of Impact Engineering,105:109-116.
Li X B,Zou Y,Zhou Z L,2014.Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method[J].Rock Mechanics and Rock Engineering,47(5):1693-1709.
Li Xibing,2014.Rock Dynamics:Fundamentals and Applications[M].Beijing:Science Press.
Li Y X,Zhu Z M,Li B X,al et,2011.Study on the transmission and reflection of stress waves across joints[J].International Journal of Rock Mechanics & Mining Sciences,48(3):364-371.
Mehranpour M H,Kulatilake P H S W,2017.Improvements for the smooth joint contact model of the particle flow code and its applications[J].Computers and Geotechnics,87:163-177.
Pyrak-nolte L J,Cook N G W,Myer L R,1987.Seismic visibility of fractures[C]//Proceeding of 28th US Symposium on Rock Mechanics.Rotterdam:A.
Balkema A..
Qiu J D,Li D Y,Li X B,al et,2017.Dynamic fracturing behavior of layered rock with different inclination angles in SHPB tests[J].Shock and Vibration,(1):1-12.
Resende R,Lamas L,Lemos J V,al et,2010.Micromechanical modelling of stress waves in rock and rock fractures[J].Rock Mechanics and Rock Engineering,43(6):741-761.
Schoenberg M,1980.Elastic wave behavior across linear slip interfaces[J].Journal of the Acoustical Society of America,68(5):1516-1521.
Shi Chong,Zhang Qiang,Wang Shengnian,2018.Numerical Simulation Technology and Application with Particle Flow Code(PFC5.0)[M].Beijing:China Architecture and Building Press.
Wang Weihua,Li Xibing,Zuo Yujun,2006.Effects of single joint with nonlinear normal deformation on P-wave propagation[J].Chinese Journal of Rock Mechanics and Engineering,25(6):1218-1225.
Xie Heping,1992.Fractal geometry and its application to rock and soil mechanics[J].Chinese Journal of Geotechnical Engineering,14(1):14-24.
Yu Jin,Guan Yunfei,Xiao Lin,al et,2007.Transmission of elastic P-wave across single fracture with different nonlinear normal deformation behaviors[J].Journal of PLA University of Science and Technology(Natural Science),8(6):589-594.
Yu Jin,Zhao Xiaobao,Zhao Weibing,al et,2008.Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J].Chinese Journal of Geotechnical Engineering,30(9):1316-1321.
Zeng Chao,Zeng Yawu,Zhao Kai,2018.Numerical simulation of particle flow of stress wave propagation characteristics under the impacts of ioint contact area and thickness[J].Journal of Water Resources and Architectural Engineering,16(1):134-139.
Zhao J,Cai J G,2001.Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior[J].Rock Mechanics and Rock Engineering,34(1):3-22.
Zhao Jian,1997.Joint match coefficient and effects to behavior of rock joint[J].Chinese Journal of Rock Mechanics and Engineering,16(6):514-521.
Zhou Z L,Zhao Y,Jiang Y H,al et,2017.Dynamic behavior of rock during its post failure stage in SHPB tests[J].Transactions of Nonferrous Metals Society of China,27(1):184-196.
曾超,曾亚武,赵凯,2018.节理接触面积和厚度对应力波传播特性影响的颗粒流数值模拟[J].水利与建筑工程学报, 16(1):134-139.
胡万瑞,2017.基于光滑节理模型的节理岩体力学特性研究[D].武汉:武汉大学.
李夕兵,2014.岩石动力学基础与应用[M].北京:科学出版社.
石崇,张强,王盛年,2018.颗粒流(PFC5.0)数值模拟技术及应用[M].北京:中国建筑工业出版社.
王卫华,李夕兵,左宇军,2006.非线性法向变形节理对弹性纵波传播的影响[J].岩石力学与工程学报,25(6):1218-1225.
谢和平,1992.分形几何及其在岩土力学中的应用[J].岩土工程学报,14(1):14-24.
俞缙,关云飞,肖琳,等,2007.弹性纵波在不同非线性法向变形行为节理处的传播[J].解放军理工大学学报(自然科学版),8(6):589-594.
俞缙,赵晓豹,赵维炳,等,2008.改进的岩石节理弹性非线性法向变形本构模型研究[J].岩土工程学报,30(9):1316-1321.
赵坚,1997.岩石节理吻合系数及其对节理特性的影响[J].岩石力学与工程学报,16(6):514-521.
[1] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[2] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[3] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[4] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[5] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[6] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[7] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[8] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
[9] 聂兴信, 甘泉, 高建, 冯珊珊. 协同理念下岩金矿脉群连续回采顶板安全跨度研究[J]. 黄金科学技术, 2020, 28(3): 337-344.
[10] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
[11] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[12] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[13] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[14] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[15] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!