img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (6): 885-893.doi: 10.11872/j.issn.1005-2518.2020.06.112

• 采选技术与矿山管理 • 上一篇    下一篇

千米深井高应力破碎围岩控制技术

王成龙1(),侯成录2,杨尚欢2(),赵兴东3   

  1. 1.山东黄金集团有限公司烟台矿业事业部,山东 莱州 261440
    2.山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
    3.东北大学采矿地压与控制研究中心,辽宁 沈阳 110819
  • 收稿日期:2020-06-14 修回日期:2020-07-29 出版日期:2020-12-31 发布日期:2021-01-29
  • 通讯作者: 杨尚欢 E-mail:292506006@qq.com;kdta2007@126.com
  • 作者简介:王成龙(1972-),男,山东郓城人,高级工程师,从事采矿工程管理工作。292506006@qq.com
  • 基金资助:
    中央高校基本科研业务费专项“深部强采动诱致采场围岩失稳判别及其响应特征”(N2001033);NSFC-山东联合基金项目“胶西北滨海深部含金构造探测与采动灾害防控机理研究”(U1806208)

Control Technology of High Stress Broken Surrounding Rock in Kilometer Deep Shaft

Chenglong WANG1(),Chenglu HOU2,Shanghuan YANG2(),Xingdong ZHAO3   

  1. 1.Yantai Mining Business Department of Shandong Gold Co. ,Ltd. ,Laizhou 261440,Shandong,China
    2.Sanshandao Gold Mine,Shandong Gold Mining (Laizhou) Co. ,Ltd. ,Laizhou 261442,Shandong,China
    3.Geomechanics Research Center,Northeastern University,Shenyang 110819,Liaoning,China
  • Received:2020-06-14 Revised:2020-07-29 Online:2020-12-31 Published:2021-01-29
  • Contact: Shanghuan YANG E-mail:292506006@qq.com;kdta2007@126.com

摘要:

针对千米深井高应力破碎围岩控制难题,以三山岛金矿大埋深巷道为工程背景,通过现场工程地质调查,获取围岩结构面信息,并结合室内岩石力学试验,进行岩体质量分级和岩体参数估算;基于RMR和Q支护图表,确定采用“喷射混凝土+锚杆+钢筋网+双筋条”方法对研究区域进行支护;应用RS2和Unwedge软件分析巷道支护前后围岩塑性区、位移和潜在楔形体安全系数的变化特征。结果表明:巷道支护后,围岩塑性区和位移显著减小,潜在楔形体安全系数明显增大,提出的支护方案能够确保巷道稳定。由此可知,经验法与数值模拟法相结合的综合研究方法可以准确地分析巷道稳定性情况,并确定更可靠的支护方案,为矿山安全生产提供可靠保障。

关键词: 千米深井, 高应力, 破碎围岩, 岩体分级, 围岩支护, 数值模拟

Abstract:

The deep mining has become an inevitable trend of the world’s metal deposit mining with the depletion of shallow metal mineral resources.The surrounding rocks in deep stopes and roadways are often in a complex stress environment of “three highs and one disturbance”.The surrounding rocks in deep roadways often suffer from collapsed,rock bursts and other damages,which causing ore loss and depletion,equipment damage and casualties,and seriously hindering the production of mines.The Sanshandao gold deposit is the earliest discovered large-scale gold deposit of altered rock in the broken zone.The structure faulted is the mainly faulted in the area.The Xinli fault zone located in the northeast of the Sanshandao-Cangshang fault zone is an ore-controlling faulted structure in the mining area.The rock mass in the fault zone is subject to strong weathering and tectonic movement.The cracks are very developed and the surrounding rock strength is low.The roof collapse often occured during tunneling.Therefore,it is necessary to take timely and effective support measures for deep high-stress fractured surrounding rocks.In this paper,the deep roadway of Sanshandao gold mine is used as the engineering background.Through field engineering geological surver,and the discontinuity information of surrounding rock at -1 005 m level in Sanshandao gold mine was obtained.The surrounding rock is mainly distributed with three sets of joints,and one set is nearly parallel to the axial direction of the roadway and the inclination angle is about 90°.The laboratory studies were carried out.Rock mass classfication were estimated,accordingly.Q=1.5,RMR=40.25,GSI=35.The quality of the rock mass is poor.Roclab software was used to estimate the mechanical parameters of the rock mass,and the compressive strength and tensile strength of the rock mass are 3.477 MPa and 0.003 MPa,respectively.The rock mass strength is low.Based on the support charts with RMR and Q,the shotcrete + anchor + reinforcement mesh + double bars support method was adopted in the study area.The RS2 and Unwedge software were used to analyze the change characteristics of surrounding rock plastic zone,displacement and potential wedge safety factor before and after roadway support.The results show that after the roadway is supported,the vertical displacement of the roadway roof is reduced from 2.2 cm to 0.76 cm.The plastic zone of the roadway roof is reduced from 4.481 m to 1.634 m,the leftwall plastic zone is reduced from 1.760 m to 0.859 m,and the rightwall plastic zone is reduced from 1.830 m to 0.860 m,the safety factor of the potential wedge of the roadway roof increased from 1.5 to 22.7.The plastic zone and displacement of the surrounding rock are significantly reduced,and the potential wedge safety factor is significantly increased.The proposed support scheme can ensure the stability of the roadway.Therefore,the comprehensive research method of combining the empirical method and numerical simulation can accurately to analyze the stability of the roadway and determine a more reliable support scheme.It provides a reliable guarantee for the mine safety production.

Key words: kilometer deep shaft, high stress, fractured surrounding rock, rock mass classification, rock support, numerical simulation

中图分类号: 

  • TD353

图1

-1 005 m中段巷道支护及节理情况"

图2

-1 005 m水平节理等密图"

表1

岩体结构面调查结果"

测点位置节理组数倾向(°)/倾角(°)结构面条数节理间距/m结构面线密度/(条·m-1结构面状况
-1 005 m中段巷3组+随机110/85100.521.91裂隙较发育,节理面光滑到一般,波状,少数节理面平直,部分充填泥质,微风化至弱风化,干燥
48/4680.472.12
274/5860.921.09

表2

岩体分级结果"

位置QRMR稳定性GSI数值
数值级别描述数值级别描述
-1 005 m中段1.50很差—差40.25一般(5 m跨度)7 d35

表3

岩体力学参数"

参数名称数值
抗压强度σc/MPa3.477
抗拉强度σt/MPa-0.003
弹性模量E/Gpa0.48
内聚力c/MPa1.17
内摩擦角φ/(°)22.3

图3

楔形体分布特征(未支护)"

图4

基于Q值的巷道支护"

图5

-1 005 m中段巷道计算模型"

图6

巷道围岩应力状态(未支护)"

图7

巷道围岩塑性区及垂直位移(未支护)"

图8

巷道围岩塑性区及垂直位移(支护)"

图9

楔形体分布特征(支护后)"

图10

现场支护情况"

1 赵兴东.高应力破裂岩体条件下锚网支护研究[J].岩土力学,2006,10(增2):918-920.
Zhao Xingdong.Research on bolt-netting support under high streessed and fractured rockmass[J].Rock and Soil Mechanics,2006,10(Supp.2):918-920.
2 赵兴东.超深竖井建设基础理论与发展趋势[J].金属矿山,2018(4):1-10.
Zhao Xingdong.Basic theory and development trends of ultra-deep shaft construction[J].Metal Mine,2018(4):1-10.
3 李秋涛,赵兴东,张洪山,等.山东金青顶矿区深部高应力急倾斜矿体开采方法研究[J].采矿技术,2019,19(2):1-4.
Li Qiutao,Zhao Xingdong,Zhang Hongshan,et al.Study on mining method of deep high-stress steeply inclined ore body in Jinqingding mining area,Shandong Province[J].Mining Technology,2019,19(2):1-4.
4 Abdellah W,Raju G D,Mitri H S,et al.Stability of underground mine development intersections during the life of a mine plan[J].International Journal of Rock Mechanics and Mining Sciences,2014,72:173-181.
5 Read R S.20 years of excavation response studies at AECL\"s Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1251-1275.
6 赵兴东,朱乾坤,赵一凡.板庙子金矿深部开采留设隔离矿柱控制地压数值优化[J].采矿技术,2019,19(1):61-66.
Zhao Xingdong,Zhu Qiankun,Zhao Yifan.Numerical optimization of controlling ground pressure with isolated pillar in deep mining of Banmiaozi gold mine[J].Mining Technology,2019,19(1):61-66
7 赵兴东,杨晓明,牛佳安,等.岩爆动力冲击作用下释能支护技术及其发展动态[J].采矿技术,2018,18(3):23-28.
Zhao Xingdong,Yang Xiaoming,Niu Jia’an,et al.Energy release support technology and development under rock burst dynamic impact[J].Mining Technology,2018,18(3):23-28.
8 Zhao H J,Ma F S,Zhang Y M,et al.Monitoring and mechanisms of ground deformation and ground fissures induced by cut-and-fill mining in the Jinchuan Mine 2,China[J].Environmental Earth Sciences,2013,68(7):1903-1911.
9 李庶林.深井硬岩岩爆倾向性与岩层控制技术研究[D].沈阳:东北大学,2000.
Li Shulin.Study on Rockburst Tendency and Rock Control Technology of Hard Rock in Deep Shaft[D].Shenyang:Northeastern University,2000.
10 侯朝炯.深部巷道围岩控制的关键技术研究[J].中国矿业大学学报,2017,46(5):970-978.
Hou Chaojiong.Key technologies for surrouding rock control in deep roadway[J].Journal of China University of Mining Technology,2017,46(5):970-978.
11 侯朝炯.深部巷道围岩控制的有效途径[J].中国矿业大学学报,2017,46(3):467-473.
Hou Chaojiong.Effective approach for surrounding rock control in deep roadway[J].Journal of China University of Mining Technology,2017,46(3):467-473.
12 柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报,2006,35(2):145-148.
Bo Jianbiao,Hou Chaojiong.Control principle of surrounding rocks in deep roadway and its applicaiton[J].Journal of China University of Mining Technology,2006,35(2):145-148.
13 Wang X Y,Bai J B,Wang R F,et al.Bearing characteristics of coal pillars based on modified limit equilibrium theory[J].International Journal of Mining Science and Technology,2015,25(6):943-947.
14 崔耀,张俊儒.硬质破碎岩体中隧道锚肋组合支护体系的构想[J].路基工程,2018(4):54-60.
Cui Yao,Zhang Junru.An idea for anchor and steel rib combined tunnel support system in hard broken surrounding rock[J].Subgrade Engineering,2018(4):54-60.
15 徐青云,高明仕,谭云,等.深部厚松散层破碎围岩大巷支护参数优化研究[J].煤炭科学技术,2015,43(4):39-42,114.
Xu Qingyun,Gao Mingshi,Tan Yun,et al.Study on op-timized support parameters of mine roadway in broken surrounding rock of deep thick and unconsolidated strata[J].Coal Science and Technology,2015,43(4):39-42,114.
16 郭建伟,刘泉声,杨战标,等.平顶山矿区深部大规模松软围岩巷道支护技术[J].岩石力学与工程学报,2012,31(增2):3904-3910.
Guo Jianwei,Liu Quansheng,Yang Zhanbiao,et al.Support technology to deep large-scale soft surrounding rock of roadway in Pingdingshan coal mine[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(Supp.2):3904-3910.
17 Meng Q B,Han L J,Xiao Y,et al.Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways[J].International Journal of Mining Science and Technology,2016,26(2):209-221.
18 杨亚平,杨有林,穆玉生,等.金川矿区深部高应力破碎岩体巷道支护技术研究及应用[J].中国矿业,2018,27(11):99-103.
Yang Yaping,Yang Youlin,Mu Yunsheng,et al.Research and application of supporting technology of fracture rock roadway with high stress of deep ground in jinchuan mining area[J].China Mining Magazine,2018,27(11):99-103.
19 袁亮,薛俊华,刘泉声,等.煤矿深部岩巷围岩控制理论与支护技术[J].煤炭学报,2011,36(4):535-543.
Yuan Liang,Xue Junhua,Liu Quansheng,et al.Control theory and supporting technology of deep rock roadway in coal mine [J].Journal of China Coal Society,2011,36(4):535-543.
20 Bieniawski Z T.Engineering Rock Mass Classifications:A Complete Manual for Engineers and Geologists in Mining,Civil and Petroleum Engineering[M].New York:John Wiley & Sons,1989.
21 Barton N,Lien R,Lunde J. Engineering classification of rock masses for the design of tunnel support[J].Rock Mechanics, 1974,6(4):189-239.
[1] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[2] 陈玉民, 王成龙, 李晓飞, 蒋翔, 赵兴东. 焦家金矿深部复杂构造下高应力岩体树脂锚索联合支护技术[J]. 黄金科学技术, 2020, 28(5): 727-733.
[3] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[4] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[5] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[6] 聂兴信, 甘泉, 高建, 冯珊珊. 协同理念下岩金矿脉群连续回采顶板安全跨度研究[J]. 黄金科学技术, 2020, 28(3): 337-344.
[7] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
[8] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[9] 李光,马凤山,郭捷,赵海军,寇永渊,兰剑,赵金田. 高地应力破碎围岩巷道变形破坏特征及支护方式研究[J]. 黄金科学技术, 2020, 28(2): 238-245.
[10] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
[11] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[12] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[13] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[14] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[15] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .