img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (2): 226-235.doi: 10.11872/j.issn.1005-2518.2021.02.148

• 采选技术与矿山管理 • 上一篇    

地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究

谢学斌(),高山,过江,叶永飞   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-08-11 修回日期:2021-01-12 出版日期:2021-04-30 发布日期:2021-05-28
  • 作者简介:谢学斌(1968-),男,湖南长沙人,教授,从事采矿工程、岩土工程和安全工程方面的教学科研工作。121815297@qq.com

Numerical Simulation Study on the Response Law of Pressure Arch Height of Deep-buried Tunnel Under Seismic Dynamic Load

Xuebin XIE(),Shan GAO,Jiang GUO,Yongfei YE   

  1. School of Resource and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-08-11 Revised:2021-01-12 Online:2021-04-30 Published:2021-05-28

摘要:

为了揭示深埋直墙拱形巷道压力拱高度在单向水平地震动荷载下的响应规律,基于FLAC3D数值模拟和经典弹塑性理论,研究了围岩级别、巷道埋深、地震动荷载强度和地震动荷载作用时间对拱顶竖直方向上的围岩压力拱高度的影响规律。根据数值模拟结论,建立围岩压力拱的多元回归预测模型,并通过对比分析验证了结论的正确性。建立了压力拱高度与围岩级别、巷道埋深、地震动荷载强度和地震动荷载作用时间的相应关系式。研究结果表明,各因素影响程度大小排序为:围岩等级>动荷载强度>动荷载作用时间>巷道埋深。研究成果可为深埋巷道施工和抗震支护设计提供一定的指导。

关键词: 深埋巷道, 地震动荷载, 压力拱高度, 数值模拟, 时间序列, 灰色关联性分析

Abstract:

With the increasing number of underground roadways built in high-intensity earthquake zones in western China,and ground motion loads will cause various earthquake damages in the roadways,this has aroused the attention of the academic community to the seismic resistance of the roadways,but there are few pressure arches in the academic community.The dynamic load response law of high altitude and its influencing factors were analyzed.Therefore,this paper studied the change law of pressure arch height under seismic dynamic load for deep horseshoe-shaped roadways.Taking the flood drainage roadway of Xiaomaliu tailing reservoir in Xichang,Sichuan Province as an example,based on FLAC3D numerical simulation orthogonal test,classic elastoplastic theory and pressure arch theory,this paper studied the influence law of the surrounding rock level,the buried depth of the roadway,the strength of the ground motion load,and the action time of the ground motion load,on the pressure arch height of surrounding rock in the vertical direction of the vault.Based on the conclusions of numerical simulation,a multiple regression prediction model of surrounding rock pressure arch and a time series prediction model of pressure arch height were established.The correlation degree of each influencing factor was studied through the correlation analysis of various factors,and the correctness of the conclusion was verified through comparative analysis.Based on this,corresponding relations between pressure arch height and surrounding rock level,roadway buried depth,ground motion load intensity,and ground motion load action time have been established,and the time effect of earthquake was considered in this paper,and the time correction of the regression model was proposed,which is more suitable for pressure arch height prediction under actual conditions.Some research results were obtained:Pressure arch height H and surface dynamic load amplitude A,dynamic load action time t,roadway buried depth h and surrounding rock grade SRC is positively correlated.And according to the analysis of MATLAB correlation degree,the order of the degree of influence of each factor is:Surrounding rock grade>dynamic load strength>dynamic load action time>roadway buried depth.Advance grouting support should be considered during construction to maintain the stability of the pressure arch.The seismic resistance of the weak surrounding rock should be considered to increase the support strength,and the pre-reinforcement treatment should be performed on the top of the roadway.The research results of the thesis have certain reference significance for the construction and support design of deep buried roadways.

Key words: deep buried tunnel, seismic dynamic load, pressure arch height, numerical simulation, time series, grey correlation analysis

中图分类号: 

  • U451.2

图1

压力拱示意图"

图2

地震前后压力拱高对比图"

表1

各因素水平取值"

水平巷道埋深/m围岩等级

地表动荷载幅值

/(m·s-2)

动荷载作用 时间/s
1500.10g1~30
2800.15g1~30
31100.20g1~30
4140-0.30g1~30
5170-0.40g1~30

表2

不同级别围岩的物理力学参数"

材料类型

密度

/(kg·m-3

弹性模量

/GPa

黏聚力

/MPa

泊松比

内摩擦角

/(°)

Ⅲ级围岩

Ⅳ级围岩

Ⅴ级围岩

2 400

2 200

1 900

13.0

5.0

1.8

1.00

0.50

0.15

0.27

0.30

0.37

45

35

25

图3

弹塑性围岩应力分布图1-松动区;2,3-承载区;4-原岩应力区;r0为隧道半径;σT为切向应力;σθ为径向应力;σ0为原岩应力"

图4

应力监测方案图"

图5

数值计算模型"

图6

汶川地震波水平向加速度时程曲线(A=0.40g,g为重力加速度)"

图7

围岩应力图"

图8

应力路线法结果图"

表3

数值模拟结果"

地表动荷载幅值/(m·s-2巷道埋深/m压力拱高度/m
Ⅲ级围岩Ⅳ级围岩Ⅴ级围岩
0.40g503.625.747.34
803.745.997.53
1103.916.227.9
1404.156.388.26
1704.336.658.86
0.30g503.375.236.69
803.425.366.82
1103.515.547.36
1403.625.817.85
1703.755.928.51
0.20g502.744.195.62
802.824.265.78
1102.914.416.09
1403.094.566.25
1703.274.746.67
0.15g502.533.95.31
802.614.085.49
1102.734.265.57
1402.834.415.72
1703.054.555.85
0.10g502.323.714.95
802.443.875.11
1102.594.065.29
1402.654.235.31
1702.814.425.46

图9

地表动荷载幅值对压力拱高度的影响(SRC=Ⅴ)"

图10

围岩等级对压力拱高度的影响(A=0.15g,g为重力加速度)"

图11

动荷载累计影响的压力拱拱高时程图"

图12

自回归模型预测验证"

图13

自回归模型对比验证"

表4

关联度分析结果"

因子关联度
巷道埋深H0.94
地表动荷载幅值A0.98
动荷载作用时间t0.97
围岩等级SRC0.99
Chen Linjie,2016. Research on the Deep and Shallow Burial Questions for Seismic Design of Tunnel under Earthquake[D]. Chongqing:Chongqing Jiaotong University.
Gao Feng,Peng Mengzhu,Fu Ming,et al.,2019.Calculation method of tunnel seismic resistance considering the action of the height of upper and lower soil columns[J].Journal of Chongqing Jiaotong University(Natural Science ),38(8):39-44.
Gao Feng,Sun Changxin,Ding Qile,al et,2016.Research on earthquake action of soil above the tunnel[J].Journal of Chang 'an University (Natural Science Edition),36(1):77-84.
Hashash Y M A,Hook J J,Schmidt B,al et,2001.Seismic design and analysis of underground structures[J].Tunnelling and Underground Space Technology,16(4):247-293.
Hu Jinjun,2003. Study on Variation of the Earthquake Ground and Sub-ground Motion[D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration.
Ji Suiwang,Tang Yongjian,Hu Degui,al et,2009.Analysis of typical seismic damages of highways in Wenchuan earthquake-induced hazard areas in Sichuan Province[J].Chinese Journal of Rock Mechanics and Engineering,28(6):1250-1260.
Kong X X,Liu Q S,Zhang Q B,al et,2018.A method to estimate the pressure arch formation above underground excavation in rock mass[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,71:382-390.
Liu Dengkai,Rao Junying,Nie Chongxin,al et,2020. Study on the variation rule of surrouding rock pressure arch in deep-buried rectangular roadway [J].Mining Research and Development,40(5):108-112.
Liu Ruijiang,Zhang Yewang,Wen Chongwei,al et,2010. Study on the design and analysis methods of orthogonal experiment[J].Experimental Technology and Management,27(9):52-55.
Lu Shasha,Ma Fenghai,Lu Yanyan,2016. Impact of the seasonal rivers on the subway tunnel structures over the subway tunnels [J].Journal of Safety and Environment,16(5):93-98.
Peng Zuzhao,Feng Kun,Xiao Mingqing,al et,2018. Reasonable overlying thickness of subaqueous tunnels based on pressure arch theory [J].Rock and Soil Mechanics,39(7):2609-2616.
Shang B,Jin X G,Ao G Y,al et,2020.Calculation of surrounding rock pressure of undercut subway station based on multi-factor affecting pressure arch theory[J].Engineering,12(2):59-70.
Tan Qiaoqiao,Yang Jiyun,2015.Application of improved AR(p) prediction model in WSN[J].Computer Engineering and Applications,51(12):83-87.
Tang Yinfei,2018. Study on Seismic Dynamic Response and Aseismic Measures for Fault Fracrure Zone in Mountain Tunnels [D].Chengdu:Southwest Jiaotong University.
Wang F F,Jiang X L,Niu J Y,2017.The large-scale shaking table model test of the shallow-bias tunnel with a small clear distance[J].Geotechnical and Geological Engineering,35:1093-1110..
Wang Huiwen,Meng Jie,2007.Predictive modeling on multivariate linear regression[J].Journal of Beijing University of Aeronautics and Astronautics,33(4):500-504.
Xu Feng,Wang Yang,Du Juan,al et,2011. Study of displacement prediction model of landslide based on time series analysis [J].Chinese Journal of Rock Mechanics and Engineering,30(4):746-751.
Ye Fei,Han Xin,Liu Yanpeng,al et,2019. Analyze on the dynamic evolution mechanism and rule of pressure arch in tunnel [J].Chinese Journal of Underground Space and Engineering,15(1):159-167.
Yu Xiaofen,Fu Dai,2004.Review of multi-index comprehensive evaluation method [J].Statistics and Decision,(11):119-121.
陈林杰,2016.地震条件下隧道抗震设计深浅埋问题的研究[D].重庆:重庆交通大学.
高峰,彭孟竹,付明,等,2019.考虑上下土柱作用的隧道抗震计算方法研究[J].重庆交通大学学报(自然科学版),38(8):39-44.
高峰,孙常新,丁其乐,等,2016.地震中隧道上方土体作用问题研究[J].长安大学学报(自然科学版),36(1):77-84.
胡进军,2003.地下地震动参数研究[D].哈尔滨:中国地震局工程力学研究所.
吉随旺,唐永建,胡德贵,等,2009.四川省汶川地震灾区干线公路典型震害特征分析[J].岩石力学与工程学报,28(6):1250-1260.
刘灯凯,饶军应,聂崇欣,等,2020.深埋矩形巷道围岩压力拱变化规律研究[J].矿业研究与开发,40(5):108-112.
刘瑞江,张业旺,闻崇炜,等,2010.正交试验设计和分析方法研究[J].实验技术与管理,27(9):52-55.
路沙沙,麻凤海,路艳艳,2016.地铁隧道地震动力响应模拟试验研究[J].安全与环境学报,16(5):93-98.
彭祖昭,封坤,肖明清,等,2018.基于压力拱理论的水下隧道合理覆岩厚度研究[J].岩土力学,39(7):2609-2616.
谭巧巧,杨吉云,2015.改进的自回归AR(p)预测模型在WSN中的应用[J].计算机工程与应用,51(12):83-87.
唐垠斐,2018.山岭隧道断层破碎带地震动力响应规律及抗减震措施研究[D].成都:西南交通大学.
王惠文,孟洁,2007.多元线性回归的预测建模方法[J].北京航空航天大学学报,33(4):500-504.
徐峰,汪洋,杜娟,等,2011.基于时间序列分析的滑坡位移预测模型研究[J].岩石力学与工程学报,30(4):746-751.
叶飞,韩鑫,刘燕鹏,等,2019.隧道压力拱动态演变机制及规律分析[J].地下空间与工程学报,15(1):159-167.
虞晓芬,傅玳,2004.多指标综合评价方法综述[J].统计与决策,(11):119-121.
[1] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[2] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[3] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[4] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[5] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[6] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[7] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[8] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[9] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
[10] 聂兴信, 甘泉, 高建, 冯珊珊. 协同理念下岩金矿脉群连续回采顶板安全跨度研究[J]. 黄金科学技术, 2020, 28(3): 337-344.
[11] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
[12] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[13] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[14] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[15] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!