img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (1): 72-84.doi: 10.11872/j.issn.1005-2518.2022.01.160

• Mining Technology and Mine Management • Previous Articles     Next Articles

Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine

Xuan FU(),Linqi HUANG(),Jiangzhan CHEN,Yangchun WU,Xibing LI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-10-29 Revised:2021-12-22 Online:2022-02-28 Published:2022-04-25
  • Contact: Linqi HUANG E-mail:fuxuan97@csu.edu.cn;huanglinqi@csu.edu.cn

Abstract:

In order to meet the challenge of the high ground temperature environment of deep mining,realize the real simulation of the environment,and improve the high ground stress-high ground temperature coupling capability of the true triaxial test equipment,the research and development of the ground temperature simulation platform of the rock true triaxial test machine has been carried out. The exploration and establishment of three kinds of heating schemes for the ground temperature simulation platform are the six-sided heating rod heating scheme based on solid medium heat transfer,the ring heater heating scheme and the liquid heat transfer heating scheme based on liquid medium heat transfer. Through the establishment of a true triaxial high ground stress-high ground temperature coupled loading program evaluation system combining numerical simulation (COMSOL),coefficient of variation method (RSD) and ideal solution for multi-attribute decision-making problems (TOPSIS),comprehensive indicators for three heating programs evaluation and scheme optimization. In order to obtain the best test results close to reality,the five basic evaluations of the quality of the evaluation plan are the uniformity of heating on the rock surface,the heat dissipation from the outside of the pressurized rod,the average heating rate of the rock sample,the strain value of the pressurized plate and the economic cost index. The COMSOL Multiphysics simulation software was used to simulate three heating schemes. Through the coefficient of variation method,the simulated data were objectively assigned,and the corresponding index values ??were brought into the TOPSIS model for comprehensive evaluation. The evaluation results show that the comprehensive evaluation indexes of the three schemes of six-sided heating rod heating,ring heater heating,and liquid heat transfer heating are 0.4288,0.9447 and 0.5532,respectively. The heating method of the ring heater is consistent with a positive ideal solution. The closeness degree reaches 0.9447,which is the optimal decision after comprehensively considering the five indicators. This evaluation system combines theoretical methods,numerical calculations and numerical simulations,and provides a reliable theoretical basis and experimental basis for finding the optimal heating scheme for true triaxial test equipment. The instrumental research on the coupling capability of ground temperature is of guiding significance.

Key words: deep mining environment, true triaxial ground temperature simulation platform, heating scheme, numerical simulation, RSD method, TOPSIS model

CLC Number: 

  • TD315
Chen B, Ren Q Y, Wang F F, al et,2021. Inversion analysis of in-situ stress field in tunnel fault zone considering high geothermal[J]. Geotechnical and Geological Engineering,39:5007-5019.
Frash LP, Gutierrez M, Hampton J,2014. True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,70:496-506.
Gong Jian, Hu Nailian, Cui Xiang, al et,2014. Prediction of rockburst tendency based on AHP-TOPSIS evaluation model[J]. Chinese Journal of Rock Mechanics and Engineering,33(7):1442-1448.
Hao Zhenxing,2017. Research on Temperature Control System of High Temperature True Three-axis Press Based on Embedded[D]. Taiyuan:Taiyuan University of Technology.
He M C, Wang Q, Wu Q Y,2021. Innovation and future of mining rock mechanics[J].Journal of Rock Mechanics and Ge-otechnical Engineering,13(1):1-21.
He Manchao, Xie Heping, Peng Suping, al et,2009. Research on deep mining rock mass mechanics[C]//Research Progress of Soft Rock Engineering and Deep Disaster Control in China——The 4th Deep Rock Mechanics and Engineering Disaster Control Symposium and China University of Mining and Technology(Beijing) Centennial Anniversary Academic Conference Proceedings.Xuzhou:China University of Mining and Technology: 10-19.
Hu Sherong, Peng Jichao, Huang Can, al et,2011. Current status and progress of research on deep mine mining more than one thousand meters[J].China Mining Industry,20(7):105-110.
Jiang T T, Zhang J H, Wu H,2016. Experimental and numerical study on hydraulic fracture propagation in coalbed methane reservoir[J]. Journal of Natural Gas Science and Engineering,35:455-467.
Li Xibing,2014. Foundation and Application of Rock Dynamics[M]. Beijing:Science Press.
Li Xibing, Gong Fengqiang,2021. Research progress and prospects of rock mechanics in deep mining based on combined dynamic and static loading tests[J]. Journal of China Coal Society,46(3):846-866.
Li Xibing, Gong Fengqiang, Du Kun, al et,2016. Progress report on experimental research of rockburst under high-stress rock mass dynamic disturbance[J]. Science & Technology Innovation Herald,13(15):173.
Li Xibing, Huang Linqi, Zhou Jian, al et,2019. Review and prospect of hard rock mining technology[J]. The Chinese Journal of Nonferrous Metals,29(9):1828-1847.
Li Xibing, Liu Bing,2018. Review and exploration on the status quo of backfill mining in hard rock mines[J].Gold Science and Technology,26(4):492-502.
Li Xibing, Yao Jinrui, Gong Fengqiang,2011. Dynamic problems in deep mining of hard rock metal mines[J].The Chinese Journal of Nonferrous Metals,21(10):2551-2563.
Li Xibing, Zhou Jian, Huang Linqi, al et,2020. Review and pro-spects of China’s gold mining technology[J].Gold,41(9):41-50.
Ma Jianxiong, Xue Linfu, Zhao Jinmin, al et,2019. Numerical simulation of temperature field in in-situ mining of oil shale[J]. Science Technology and Engineering,19(5):94-103.
Ma Xiao, Ma Dongdong, Hu Dawei, al et,2019. Development and application of real-time high-temperature true triaxial test system[J].Chinese Journal of Rock Mechanics and Engineering,38(8):1605-1614.
Nasseri M, Goodfellow S, Lombos L, al et,2014. 3-D transport and acoustic properties of fontainebleau sandstone during true-triaxial deformation experiments[J].International Jou-rnal of Rock Mechanics and Mining Sciences,69:1-18.
Niu Xuechao, Zhang Qingxi, Yue Zhongwen,2013.Current situation and development trend of rock triaxial testing machine[J].Rock and Soil Mechanics,34(2):600-607.
Qin Hong, Zhang Xin, Bai Jingru, al et,2014. Experimental study on temperature distribution in oil shale gas heat carrier dry distillation furnace[J].Chemical Machinery,41(6):727-732.
Ren Aihua,1988. Newly developed 800t high temperature and high pressure servo triaxial rheometer[J]. Chinese Journal of Geophysics,(2):236.
Ren Song, Yang Chunhe, Jiang Deyi, al et,2011. Development and application of high-temperature triaxial salt rock dissolution characteristics testing machine[J]. Chinese Journal of Rock Mechanics and Engineering,30(2):289-295.
Shi Liangqi, Song Ruiqing, Wu Xiuquan,1986.Development of high pressure and temperature triaxial experimental vessels used with either gas or liquid media[J]. Chinese Journal of Rock Mechanics and Engineering,(3):301-308.
Shi Zequan, Zhou Meiqing,1990. Design of 800MPa high temperature and high pressure triaxial chamber[J].Chinese Jou-rnal of Geophysics,(2):202-207.
Wang Yunmin,2011. Opportunities and challenges faced by the metal mining industry and technical countermeasures[J]. Modern Mining,27(1):1-14.
Xie Heping, Gao Feng, Ju Yang,2015. Research and exploration of deep rock mass mechanics[J].Chinese Journal of Rock Mechanics and Engineering,34(11):2161-2178.
Yin Guangzhi, Li Minghui, Xu Jiang, al et,2015. Development and application of a multifunctional true triaxial fluid-solid coupling test system[J]. Chinese Journal of Rock Mechanics and Engineering,34(12):2436-2445.
Zhao Wei, Lin Jian, Wang Shufang, al et,2013. Influence of human activities on groundwater environment based on coefficient variation method[J]. Environmental Science,34(4):1277-1283.
Zhao Yangsheng, Wan Zhijun, Zhang Yuan, al et,2008.Develo-pment of a 20MN servo-controlled high-temperature and high-pressure rock mass triaxial testing machine[J].Chine-se Journal of Rock Mechanics and Engineering,194(1):1-8.
龚剑,胡乃联,崔翔,等,2014.基于AHP-TOPSIS评判模型的岩爆倾向性预测[J].岩石力学与工程学报,33(7):1442-1448.
郝振兴,2017. 基于嵌入式的高温真三轴压力机温度控制系统研究[D]. 太原:太原理工大学.
何满潮,谢和平,彭苏萍,等,2009. 深部开采岩体力学研究[C]//中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集.徐州:中国矿业大学: 10-19.
胡社荣,彭纪超,黄灿,等,2011. 千米以上深矿井开采研究现状与进展[J]. 中国矿业,20(7):105-110.
李夕兵,2014.岩石动力学基础与应用[M].北京:科学出版社.
李夕兵,宫凤强,2021. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,46(3):846-866.
李夕兵,宫凤强,杜坤,等,2016. 高应力岩体动力扰动下发生岩爆的试验研究进展报告[J]. 科技创新导报,13(15):173.
李夕兵,黄麟淇,周健,等,2019. 硬岩矿山开采技术回顾与展望[J]. 中国有色金属学报,29(9):1828-1847.
李夕兵,刘冰,2018.硬岩矿山充填开采现状评述与探索[J].黄金科学技术,26(4):492-502.
李夕兵,姚金蕊,宫凤强,2011. 硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,21(10):2551-2563.
李夕兵,周健,黄麟淇,等,2020.中国黄金矿山开采技术回顾与展望[J]. 黄金,41(9):41-50.
马建雄,薛林福,赵金岷,等,2019. 油页岩原位开采温度场的数值模拟[J]. 科学技术与工程,19(5):94-103.
马啸,马东东,胡大伟,等,2019. 实时高温真三轴试验系统的研制与应用[J]. 岩石力学与工程学报,38(8):1605-1614.
牛学超,张庆喜,岳中文,2013.岩石三轴试验机的现状及发展趋势[J].岩土力学,34(2):600-607.
秦宏,张鑫,柏静儒,等,2014. 油页岩气体热载体干馏炉内温度分布的试验研究[J]. 化工机械,41(6):727-732.
任爱华,1988. 新研制的800t高温高压伺服三轴流变仪[J]. 地球物理学报,(2):236.
任松,杨春和,姜德义,等,2011. 高温三轴盐岩溶解特性试验机研制及应用[J]. 岩石力学与工程学报,30(2):289-295.
施良骐,宋瑞卿,吴秀泉,1986.气液两用高温高压岩石三轴实验容器的研制[J].岩石力学与工程学报,(3):301-308.
石泽全,周枚青,1990. 800MPa高温高压三轴室设计研究[J]. 地球物理学报,(2):202-207.
王运敏,2011. 金属矿采矿工业面临的机遇和挑战及技术对策[J]. 现代矿业,27(1):1-14.
谢和平,高峰,鞠杨,2015. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,34(11):2161-2178.
尹光志,李铭辉,许江,等,2015. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报,34(12):2436-2445.
赵微,林健,王树芳,等,2013. 变异系数法评价人类活动对地下水环境的影响[J]. 环境科学,34(4):1277-1283.
赵阳升,万志军,张渊,等,2008. 20MN伺服控制高温高压岩体三轴试验机的研制[J]. 岩石力学与工程学报,194(1):1-8.
[1] Dan HUANG,He CHEN,Zhijie ZHENG. Model of the Height of Overburden Fracture Zone Based on Void Conservation [J]. Gold Science and Technology, 2021, 29(6): 843-853.
[2] Hongwei DENG,Zhiming ZHONG,Guanglin TIAN. Numerical Simulation of Sectional Oxygen⁃Enrichment Ventilation in Plateau Mine [J]. Gold Science and Technology, 2021, 29(5): 698-708.
[3] Lulu XU,Qinli ZHANG,Ru FENG. Numerical Simulation of Backfill Strength Based on Optimization Results of Stope Structural Parameters [J]. Gold Science and Technology, 2021, 29(3): 421-432.
[4] Jingkai JIA,Gun HUANG,Long WANG,Qiang CHENG,Libing ZHEN. Study on a New Method of Weakening End Effect in Uniaxial Compression Test [J]. Gold Science and Technology, 2021, 29(3): 382-391.
[5] Jin HUANG,Kewei LIU,Shaohu JIN. Numerical Simulation Study of High-strength Projectile Penetrating White Granite Target [J]. Gold Science and Technology, 2021, 29(3): 411-420.
[6] Weihua WANG,Jie LUO,Tian LIU,Zhenyu HAN. Particle Flow Simulation on Influence of Joint Roughness Coefficient on Stress Wave Propagation and Specimens Failure [J]. Gold Science and Technology, 2021, 29(2): 208-217.
[7] Xuebin XIE,Shan GAO,Jiang GUO,Yongfei YE. Numerical Simulation Study on the Response Law of Pressure Arch Height of Deep-buried Tunnel Under Seismic Dynamic Load [J]. Gold Science and Technology, 2021, 29(2): 226-235.
[8] Peng JIN,Kewei LIU,Xudong LI,Jiacai YANG. Numerical Simulation Study of Crack Propagation in Deep Rock Mass Under Water-coupling Blasting [J]. Gold Science and Technology, 2021, 29(1): 108-119.
[9] Jianhua HU,Le PANG,Xueliang WANG,Minghua ZHENG. Optimization of Roadway Support Parameters in Soft Broken Sections Based on Orthogonal Test [J]. Gold Science and Technology, 2020, 28(6): 859-867.
[10] Chenglong WANG,Chenglu HOU,Shanghuan YANG,Xingdong ZHAO. Control Technology of High Stress Broken Surrounding Rock in Kilometer Deep Shaft [J]. Gold Science and Technology, 2020, 28(6): 885-893.
[11] Zeyou LI, Rui HUANG, Shuqi ZHAO, Xue SHEN, E WU. Ventilation Method Optimization of Dust Extraction in an Excavation Roadway of High-altitude Mine [J]. Gold Science and Technology, 2020, 28(5): 743-752.
[12] Huaibin SU, Qinli ZHANG, Deming ZHANG, Changgen ZENG, Xiaojiang ZHU. Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine [J]. Gold Science and Technology, 2020, 28(4): 550-557.
[13] Guicheng HE, Kexu CHEN, Bing DAI, Chengcheng WANG. Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture [J]. Gold Science and Technology, 2020, 28(4): 509-520.
[14] Yongyuan KOU, Guang LI, Long ZOU, Fengshan MA, Jie GUO. Study on Mining Method of Horizontal Pillar in the Middle Section of +1 000 m in Jinchuan No.2 Mining Area [J]. Gold Science and Technology, 2020, 28(3): 353-362.
[15] Shibo YU, Xiaocong YANG, Ye YUAN, Zhixiu WANG. Research on Destress Effect of Ground Pressure Control for the Time-space Mining Sequence at Depths [J]. Gold Science and Technology, 2020, 28(3): 345-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Gold Science and Technology, 0, (): 0 .
[2] ZHANG Zhuang,LI Wen,LIU Jianming,ZENG Qingdong. Progress of Exploration and Prospecting Thoughts for Silver Polymetallic Deposit at Southern-middle Parts of the Da Hinggan Mountains[J]. Gold Science and Technology, 2016, 24(4): 60 -65 .
[3] ZHU Xueli,FENG Tao,BAI Rui,NING Xiaofeng,LI Xiao,ZHANG Zijin. “Geology+”:A Preliminary Application on the Multi-Driven Intelligent Geological Exploration[J]. Gold Science and Technology, 2017, 25(1): 46 -54 .
[4] HE Shunbin,LIU Jie.
Dominant Grouping of Rock Mass Structural Space Orientation Based on Spectral Clustering Algorithm 
[J]. Gold Science and Technology, 2017, 25(4): 46 -51 .
[5] YIN Lu,JIN Zhenan,YANG Hongying,ZHANG Qin. Present Situation and Forecast of Gold Resources Utilization in China[J]. Gold Science and Technology, 2018, 26(1): 17 -24 .
[6] QU Hui, WANG Baiyi, WANG Jianmin, LI Chenglu, XU Guozhan, WANG Zhuo. Application of Soil Geochemical Survey in the Exploration of Yongxin Gold Deposit and Its Prospecting Effect[J]. Gold Science and Technology, 2018, 26(2): 143 -152 .
[7] LIAO Qinhuan. Application of Flash Flotation in a Certain Gold Mine Concentrator in Gansu Province[J]. Gold Science and Technology, 2016, 24(2): 108 -111 .
[8] GAO Shuai1,2,ZENG Qingdong1,YU Changming,XING Baoshan,JING Linhai,YE Jie,FAN Hongrui,YANG Kuifeng. Application of Remote Sensing and Comprehensive Geophysical Methods in Spatial Localization of Hidden Metallogenic Intrusions in South Zhaoyuan,Shandong Province[J]. Gold Science and Technology, 2017, 25(5): 1 -10 .
[9] MA Fengshan,LI Kepeng,DU Yunlong,HOU Chenglu,LI Wei2,ZHANG Guodong. Analysis on the Possible Failure Modes of Water Burst Prevention Structures of F1 Fault Caused by Undersea Mining in Sanshandao Gold Mine[J]. Gold Science and Technology, 2017, 25(5): 47 -56 .
[10] PENG Jianping,SHEN Shubao. [J]. Gold Science and Technology, 2016, 24(4): 133 -136 .