img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (5): 743-752.doi: 10.11872/j.issn.1005-2518.2020.05.065

• Mining Technology and Mine Management • Previous Articles     Next Articles

Ventilation Method Optimization of Dust Extraction in an Excavation Roadway of High-altitude Mine

Zeyou LI(),Rui HUANG(),Shuqi ZHAO,Xue SHEN,E WU   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-03-30 Revised:2020-05-25 Online:2020-10-31 Published:2020-11-05
  • Contact: Rui HUANG E-mail:1277136677@qq.com;huangrui@csu.edu.cn

Abstract:

With the implementation of the grand western development program,a number of mines located at high altitude have appeared in China,where the special environmental factors of low air pressure and low temperature have brought challenge to the dust extraction work of the mines.The large amount of productive dust will cause serious damage to human respiratory system and is one of the main threats to the health of mine workers.The working face of the excavation roadway is one of the largest productive dust sources in underground mining operation.Therefore,it is of great engineering value and theoretical significance to study the dust extraction method of excavation roadway in high-altitude mine.In order to optimize the ventilation method of dust extraction in an excavation roadway of high-altitude mine and study the law of dust particle diffusion and distribution,the numerical simulation was conducted with computational fluid dynamics software Fluent and an excavation roadway (with section shape of three centered arch) at an altitude of 3 700 m in Pulang mine was taken as research object.The Lagrange discrete phase model was selected to calculate the gas-solid flow,which allows the exchange of momentum,mass and energy between continuous phase and discrete phase but ignores the interaction between particles.Through analyzing six different ventilation scheme models about far-forcing-near-exhausting(FFNE),near-forcing-far-exhausting(NFFE) and pure forcing(PF) established in this paper,the airflow field,dust particle distribution and respiratory zone dust particle concentration of them were analyzed and compared to optimize the better ventilation method.The distance between the pressure vent and the heading face and the distance between the center of the air duct and the ground were set as parameters to optimize the position of the air duct of the blowing ventilation.The mass concentration of dust particles and the law of dust particle diffusion in the selected plan were analyzed and compared with the excavation roadway in plain mine under the same ventilation condition.The following conclusions can be drawn:For the excavation roadway at an altitude of 3 700 m in Pulang mine,the best solution for dust extraction is using blowing ventilation scheme where the air duct is arranged in the position directly above the center of the roadway,while the distance between the pressure vent and the heading face is set to 16 m, and the distance between the center of the air duct and the ground is set to 3 m.The sedimentation of dust particles makes the mass concentration of dust particles is high at the bottom of the roadway and low at the top of the roadway.The mass concentration of dust particles at the cross section of the roadway (1 m,5 m,10 m,20 m,30 m) increases first and then decreases.The occurrence point of the maximum value of the dust particle mass concentration moves away from the working face with time,and its value generally decreases.Under the same ventilation condition,the dust extraction efficiency of high altitude mine is better than that of plain mine.

Key words: high-altitude mine, excavation roadway, forced ventilation, mixed ventilation, dust extraction, dust distribution, numerical simulation

CLC Number: 

  • TD72

Fig.1

3D model of excavation roadway"

Fig.2

Air duct layout in excavation roadway section"

Table 1

Position of air duct in each scheme"

方案编号通风方式压入风筒位置末端与掘进面的距离/m抽出风筒位置末端与掘进面的距离/m
方案一长压短抽A12B4
方案二长压短抽A12D4
方案三压入式C12--
方案四压入式A12--
方案五短压长抽A5B30
方案六短压长抽A5D30

Table 2

Parameter setting of the model"

参数设定值
空气密度/(kg·m-30.846
大气压力/Pa64 089
湍流模型标准k-epsilon模型
压入风筒风速/(m·s-112
抽出风筒风速/(m·s-17
水力直径DH/m0.6
湍流强度I/%3.2
喷射源类型面喷射(掘进面)
密度/(kg·m-32 200
开始/结束时间/s10/12
最小直径/m1×10-6
最大直径/m1×10-5
平均直径/m5×10-6
直径分布方式R-R分布
质量流率/(kg·s-10.0056
每步时间尺度/s0.1
计算步数3 000

Fig.3

Mesh generation of the model"

Table 3

Grid quality statistics"

网格度量标准最小值最大值平均值标准差
偏斜度9.4×10-50.8260.2190.126
单元质量0.1090.9990.7930.221
正交质量0.2110.9990.8750.091

Fig.4

Distribution of airflow velocities"

Fig.5

Airflow velocities distribution diagram of roadway airflow field in scheme 1(Y=2.7 m)"

Fig.6

Diagram of roadway airflow field in various schemes"

Fig.7

Cloud map of dust particle distribution of various schemes in roadway"

Fig.8

Cloud map of dust particle mass concentration in respiratory zone of various schemes"

Fig.9

Number of dust particles in various schemes"

Fig.10

Variation of dust particle mass concentration in different positions of the roadway"

Fig.11

Variation of dust particle mass concentration of respiratory surface under different altitude"

1 庞杰文,谢建林,卢国菊,等.长抽短压通风下综掘工作面粉尘分布特征研究[J].煤炭科学技术,2017,45(10):76-81,134.
Pang Jiewen,Xie Jianlin,Lu Guoju,et al.Study on dust distribution features of fully-mechanized heading face under long distance exhausted and short distance forced ventilation[J].Coal Science and Technology,2017,45(10):76-81,134.
2 聂文,马骁,程卫民,等.通风条件影响长压短抽掘进面粉尘扩散的仿真实验[J].中南大学学报(自然科学版),2015,46(9):3346-3353.
Nie Wen,Ma Xiao,Cheng Weimin,et al.Simulation experiment on effects of ventilation conditions on dust diffusion of the forced with long duct fan accompanied with short duct exhaustor in heading face[J].Journal of Central South University(Science and Technology),2015,46(9):3346-3353.
3 王晓珍.煤巷掘进过程中粉尘浓度影响因素分析[J].中国安全生产科学技术,2011,7(4):75-79.
Wang Xiaozhen.Analysis of dust concentration influence factor in coal roadway driving[J].Journal of Safety Science and Technology,2011,7(4):75-79.
4 龚剑,胡乃联,林荣汉,等.掘进巷道压入式通风粉尘运移规律数值模拟[J].有色金属(矿山部分),2015,67(1):65-68.
Gong Jian,Hu Nailian,Lin Ronghan,et al.Numerical simulation on dust migration law in excavation roadway with forced ventilation[J].Nonferrous Metals(Mine Section),2015,67(1):65-68.
5 Ren T,Zhang J,Wang Z W.Improved dust management at a longwall top coal caving(LTCC) face-A CFD modelling approach[J].Advanced Powder Technology:The Internation Journal of the Society of Powder Technology,Japan,2018,29‍(10):2368-2379.
6 Chang P,Xu G,Zhou F B,et al.Minimizing DPM pollution in an underground mine by optimizing auxiliary ventilation systems using CFD[J].Tunnelling and Underg-rou-nd Space Technology,2019,87(5):112-121.
7 Zheng Y,Lan H,Thiruvengadam M,et al.DPM dissipation experiment at MST’s experimental mine and comparison with CFD simulation[J].Journal of Coal Science and Engineering(China),2011,17(3):285-289.
8 Zhang Q,Zhou G,Qian X M,et al.Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation[J].Journal of Cleaner Production,2018,184:239-250.
9 周智勇,胡培,韩章程,等.掘进工作面通风布置对粉尘分布规律的影响[J].中南大学学报(自然科学版),2018,49(9):2264-2271.
Zhou Zhiyong,Hu Pei,Han Zhangcheng,et al.Effect of heading face ventilation arrangement on regulation of dust distribution[J].Journal of Central South University(Science and Technology),2018,49(9):2264-2271.
10 胡方坤,时国庆,张义坤,等.基于非稳态DPM模拟研究长压短抽式掘进面粉尘运移规律[J].中国煤炭,2013,39(12):104-108.
Hu Fangkun,Shi Guoqing,Zhang Yikun,et al.Simulation of dust migration law at heading face under far-pressing-near-absorption ventilation based on DPM in unstable state[J].China Coal,2013,39(12):104-108.
11 Chang F L,Sun Y M,Chuang K H,et al.Work fatigue and physiological symptoms in different occupations of high-elevation construction workers[J].Applied Ergonomics,2009,40(4):591-596.
12 王孝东.高海拔金属矿山矿井通风系统研究[D].北京:北京科技大学,2015.
Wang Xiaodong.Research on Ventilation System of Metal Mine at High Altitude[D].Beijing:University of Science and Technology Beijing,2015.
13 龚剑,胡乃联,崔翔,等.高海拔矿山掘进通风方式优选[J].科技导报,2015,33(4):56-60.
Gong Jian,Hu Nailian,Cui Xiang,et al.Optimization of drifting ventilation method for high-altitude mine[J].Science and Technology Review,2015,33(4):56-160.
14 钟华,胡乃联,李国清,等.基于Fluent的高海拔矿山掘进工作面增氧通风技术研究[J].安全与环境学报,2017,17(1):81-185.
Zhong Hua,Hu Nailian,Li Guoqing,et al.On the oxygen-intensifying ventilation technology for plateau mine tunneling via the application of the software Fluent[J].Journal of Safety and Environment,2017,17(1):81-85.
15 何磊.高原矿山独头巷道增氧通风数值模拟研究[J].现代矿业,2011(2):37-40.
He Lei.Study on oxygen enhancing ventilation in blind drift at plateau mine by numerical simulation[J].Modern Mining,2011(2):37-40.
16 李蓉蓉,李孜军,赵淑琪,等.基于CFD的高海拔矿山掘进面通风增氧方案优化[J].中国安全生产科学技术,2020,16(2):54-60.
Li Rongrong,Li Zijun,Zhao Shuqi,et al.Optimization of aeration scheme with heading face ventilation in high-altitude mine based on CFD[J].Journal of Safety Science and Technology,2020,16(2):54-60.
17 刘子龙,杨洪英,佟琳琳,等.高海拔环境下氧化铜矿浮选优化试验研究[J].黄金科学技术,2019,27(4):589-597.
Liu Zilong,Yang Hongying,Tong Linlin,et al.Experimental study on flotation optimization of copper oxide ore in high altitude enviroment[J].Gold Science and Technology,2019,27(4):589-597.
18 龚剑,胡乃联,林荣汉,等.高海拔矿山掘进面长压短抽式通风粉尘分布数值模拟[J].金属矿山,2014,43(12):203-208.
Gong Jian,Hu Nailian,Lin Ronghan,et al.Numerical si-mulation of dust distribution with far-pressing-near-absorption ventilation in an excavation roadway of high-altitude mine[J].Metal Mine,2014,43(12):203-208.
19 张德存.三心拱主要几何参数间系数值的理论修正[J].铀矿冶,2018,37(2):112-115.
Zhang Decun.Theory correction among coefficient values of principal geometrical parameters of three centered arch[J].Uranium Mining and Metallurgy,2018,37(2):112-115.
20 程卫民.矿井通风与安全[M].北京:煤炭工业出版社,2016.
Cheng Weimin.Mine Ventilation and Safety[M].Beijing:Coal Industry Press,2016.
21 Adamczyk W P,Klimanek A,Bialecki R A,et al.Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed[J].China Particuology,2014,15(4):129-137.
22 中华人民共和国国家质量监督检验检疫总局,国家标准化管理委员会.金属非金属矿山安全规程:GB16423-2006[S].北京:中国标准出版社,2006.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Administration Standardization.Safety regulations for metal and nonmetal mines:GB16423-2006[S].Beijing:Standards Press of China,2006.
[1] Huaibin SU, Qinli ZHANG, Deming ZHANG, Changgen ZENG, Xiaojiang ZHU. Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine [J]. Gold Science and Technology, 2020, 28(4): 550-557.
[2] Guicheng HE, Kexu CHEN, Bing DAI, Chengcheng WANG. Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture [J]. Gold Science and Technology, 2020, 28(4): 509-520.
[3] Yongyuan KOU, Guang LI, Long ZOU, Fengshan MA, Jie GUO. Study on Mining Method of Horizontal Pillar in the Middle Section of +1 000 m in Jinchuan No.2 Mining Area [J]. Gold Science and Technology, 2020, 28(3): 353-362.
[4] Xingxin NIE, Quan GAN, Jian GAO, Shanshan FENG. Research on Safety Roof Span in Continuous Mining of Gold Vein Group Under Synergistic Concept [J]. Gold Science and Technology, 2020, 28(3): 337-344.
[5] Shibo YU, Xiaocong YANG, Ye YUAN, Zhixiu WANG. Research on Destress Effect of Ground Pressure Control for the Time-space Mining Sequence at Depths [J]. Gold Science and Technology, 2020, 28(3): 345-352.
[6] Rui HUANG,E WU,Lin WU. Study on the Influence of Altitude on Smoke Propagation Law in Mine Roadway Fire [J]. Gold Science and Technology, 2020, 28(2): 293-300.
[7] Long TIAN,Zhiyong ZHOU,Jianhong CHEN. Numerical Simulation of Temperature Distribution in Mining Area of High Temperature Mine with Auxiliary Ventilation [J]. Gold Science and Technology, 2020, 28(1): 61-69.
[8] Qinli ZHANG,Chaoyu JIANG,Xiang GAO,Bin LIU. Study on Optimization of Structural Parameters of Hexagonal Mining Method with Large Cross-section [J]. Gold Science and Technology, 2020, 28(1): 42-50.
[9] Yuan GAO,Qingfa CHEN,Tenglong JIANG. Research on Three-Dimensional Numerical Model Construction Method and Cemented Filling Treatment of Complex Cavities in Daxin Manganese Mine [J]. Gold Science and Technology, 2019, 27(6): 851-861.
[10] Enxiang SONG, Qiang LI, Jing ZHANG, Kang PENG. Research and Application of Artificial False Bottom in Mining of Orebody in Alteration Zone [J]. Gold Science and Technology, 2019, 27(5): 722-730.
[11] Jun TIAN, Jianpo LIU, Yong YANG, Changyin ZHANG. Study on the Failure Law of Backfill Induced by Blasting Disturbance During Cut and Fill Mining Process [J]. Gold Science and Technology, 2019, 27(5): 687-695.
[12] Shijiao YANG,Zhihui WANG. Numerical Simulation on Stability of Shallow-buried Goaf Group with Overlying Highway [J]. Gold Science and Technology, 2019, 27(4): 505-512.
[13] Feng LIU,Zhaokun WANG,Fengshan MA,Bo WANG,Jianbo WANG,Chunlei DONG. Current Situation and Prospect of Destressing Techniques in Deep Mine [J]. Gold Science and Technology, 2019, 27(3): 425-432.
[14] Rui LIANG,Ruili YU,Wenhai ZHOU,Xiaobin HUANG,Jianyong WANG,Zhengyu XIONG. Application of Air Interval Charge Blasting Model in Mining Room [J]. Gold Science and Technology, 2019, 27(3): 358-367.
[15] Shikang QIN,Qingfa CHEN,Tingchang YIN. Connotation Differences and Research Progress of the Freeze-Thaw Damages of Rock and Rock Mass [J]. Gold Science and Technology, 2019, 27(3): 385-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[2] ZHANG Huaquan,ZHANG Weixin,LI Hongjie. Ore—-formation Conditions and Exploration Orientation of the Gold Deposite in Jiaolai Basin,Shandong Province[J]. J4, 2008, 16(2): 12 -17 .
[3] ZANG Enguang,YI Cunchang,ZHANG Chunxiao. The Geologic Feature and the Clue for Prospecting of Huana Conglomerate Gold Deposit in Heilongjiang[J]. J4, 2008, 16(2): 29 -32 .
[4] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[5] YANG Xiao-Hong. null[J]. J4, 2010, 18(6): 38 -41 .
[6] JIANG Bing-Zhong, SONG Bing-Jian. Analysis of Gold Prospecting Potential in GaLasan area,Heilongjiang Province[J]. J4, 2011, 19(1): 34 -37 .
[7] ZHANG Yuan, ZHANG Hong-Xi. [J]. J4, 2010, 18(4): 12 -16 .
[8] LI Bin, JU Hai-Xiang, YANG Mu, DU Gao-Feng, HUI Ji-Kang, WANG Tian-Guo. [J]. J4, 2010, 18(4): 17 -21 .
[9] ZHANG Yan, SHANG Qian. Research Progress of Gold Deposits of Ductile Shear Zone——Taking Ailaoshan Gold Zone as an Example[J]. J4, 2011, 19(1): 11 -15 .
[10] WANG Yanxue. Metallogenic Condition and Prospecting Orientation of Eerqisi Gold Zone,Xinjiang provinc[J]. J4, 2008, 16(3): 17 -20 .