img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (4): 550-557.doi: 10.11872/j.issn.1005-2518.2020.04.030

• Mining Technology and Mine Management • Previous Articles     Next Articles

Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine

Huaibin SU1(),Qinli ZHANG1(),Deming ZHANG2,Changgen ZENG3,Xiaojiang ZHU3   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410000,Hunan,China
    2.Hunan Zhongda Design Institute Co. , Ltd. ,Changsha 410000,Hunan,China
    3.Hunan Pengyuan Hongda Mining Co. , Ltd. ,Hengyang 421000,Hunan,China
  • Received:2020-01-06 Revised:2020-05-11 Online:2020-08-31 Published:2020-08-27
  • Contact: Qinli ZHANG E-mail:1291306752@qq.com;zhangqinlicn@126.com

Abstract:

Rangjialong mine is a continuous mining mine,and a large number of mined-out areas are left over from years of open-field mining,which are prone to caving and collapse,thus inducing large-scale ground pressure activities.A large number of pillars are left in the open field method,and the loss of pillar resources is serious.At the same time,tailings pond design dam crest elevation of 165 m,the current has been discharged to 156 m,tailings pond storage capacity is close to saturation,the mine is facing the dilemma of nowhere to discharge the tailings.In order to solve the above problems,the mine will change the current method to the two-step stope backfilling method,which is urgent to determine the safe and reasonable stope structure parameters,mainly considering stope span.In this study,finite element simulation software was used to establish 5 stope structure models with different spans,with a gradient of 5 m and a span range of 15~35 m.The two-step stoping process is simulated,and the stress distribution and displacement variation of the two step stoping pillar and backfill artificial pillar were obtained,and the ultimate strength of the stope rock (or backfill) was compared,and the stope structure parameters were optimized.According to the results of simulation,the value of the tensile stress of the artificial pillar and backfill in each scheme is less than the allowable tensile stress,the safety coefficient of the tensile stress decreases with the increase of the stope width,and the minimum value is close to 2.0.The roof column and pillar under each simulation scheme are not in a state of instability.When the stope span is between 15 m and 25 m,the simulated compressive stress value of the corresponding model is in the critical state or stable state,the compressive stress safety coefficient is greater than 1.3,and the Y direction displacement is uniform.The simulated compressive stress value of the roof pillar is very close to the allowable value when the stope span is greater than 30 m,the roof column is prone to compressive stress failure.The overall displacement change in the Y direction of the filling artificial pillar under 5 schemes does not exceed 10 mm,which is safe and controllable.In order to ensure the economic benefits of the mine,the reasonable stope span is finally determined to be 20~25 m,the stope width is 40 m and the stage height is 80 m.It can provide theoretical support for the recovery of residual ore resources in mines with similar engineering geological conditions.

Key words: mining method, two-step backfilling of empty space, optimization of stope structure parameters, numerical simulation, ANSYS

CLC Number: 

  • TD853

Table 1

Summary of mechanical parameters data used in simulation"

名称弹性模量Em/GPa抗压强度σm/MPa抗拉强度σt/MPa体重/(kg·m-3泊松比υ黏结力Cm/MPa内摩擦角φm/(°)
围岩8.19.66.32 7500.190.832
矿体7.36.283.55 5000.251.835
充填体0.121.590.21 9400.240.237

Table 2

Simulation scheme of different stope structure parameters"

模拟序号宽度X/m长度Y/m高度Z/m
1154080
2204080
3254080
4304080
5354080

Fig.1

Numerical model section"

Table 3

Summary of numerical simulation results of each model"

区域模拟序号模拟压应力值/Pa压应力安全系数模拟拉应力值/Pa拉应力安全系数Y方向位移/m
顶柱17.31E+058.592.82E+0512.420.00141
21.04E+066.043.80E+059.220.00213
34.81E+061.311.29E+062.710.00513
45.41E+061.161.49E+062.350.01113
56.31E+061.001.79E+061.960.04313
充填体人工矿柱11.11E+0514.321.87E+0410.670.01644
22.70E+055.894.44E+044.510.01957
34.88E+053.267.54E+042.650.02351
45.53E+052.888.56E+042.340.02565
56.12E+052.609.26E+042.160.02925

Fig.2

Cloud chart of numerical simulation results of stope span 20 m"

Fig.3

Cloud chart of numerical simulation results of stope span 25 m"

Fig.4

Cloud chart of numerical simulation results of stope span 30 m"

1 马俊生,任高峰,张聪瑞,等.基于稳定性图表法和数值模拟的采场跨度优化研究[J].中国矿山工程,2017,46(6):7-14.
Ma Junsheng,Ren Gaofeng,Zhang Congrui,et al.Study on stope span optimization based on stability chart and numerical simulation[J].China Mine Engineering,2017,46(6):7-14.
2 Feng X T,Hudson J.The ways ahead for rock engineering design methodologies[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(2):255-273.
3 Feng X T,Hudson J.Rock Engineering Design[M]. London:CRC Press,2011:322-341.
4 董蕾.采动结构参数优化设计及可靠度分析[D].长沙:中南大学,2010.
Dong Lei.Optimization Design and Reliability Analysis of Mining Structure Parameters[D].Changsha:Central South University,2010.
5 蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
Cai Meifeng.Rock Mechanics Rock Engineering[M]. Beijing:Science Press,2002.
6 王文星.岩体力学[M].长沙:中南大学出版社,2004.
Wang Wenxing.Rock Mass Mechanics[M].Changsha:Central South University Press,2004.
7 杨剑锋.中厚倾斜矿体导流放矿实验研究[D].衡阳:南华大学,2018.
Yang Jianfeng.Experimental Study on Diversion Ore Drawing of Medium-thick Inclined Orebody[D].Hengyang:University of South China,2018.
8 李彬,许梦国,程爱平,等.程潮铁矿放矿模拟试验研究[J].有色金属(矿山部分),2011,63(5):15-18.
Li Bin,Xu Mengguo,Cheng Aiping,et al.Simulation experiment of ore drawing in Chengchao iron mine[J]. Nonferrous Metals(Mine Section),2011,63(5):15-18.
9 刘爱华,董蕾.海水下基岩矿床安全开采顶板厚度计算方法[J].采矿与安全工程学报,2010,27(3):335-340.
Liu Aihua,Dong Lei.Calculation methods of roof thickness for safety mining of bedrock deposit undersea water pressure[J].Journal of Mining and Safety Engineering,2010,27(3):335-340.
10 饶运章,陈辉,肖广哲,等.基于FLAC3D数值模拟采场底部结构设计研究[J].有色金属科学与工程,2011,2(2):43-47.
Rao Yunzhang,Chen Hui,Xiao Guangzhe,et al.On the design of stope bottom structures based on FLAC3D numerical simulation[J].Jiangxi Nonferrous Metals,2011,2(2):43-47.
11 王树海,李威.三山岛新立矿区采场结构参数优化研究[J].中国矿业,2009,18(5):53-55,63.
Wang Shuhai,Li Wei.Optimization selection of mining method in under-sea deposit in Xinli zone of Sanshandao gold mine[J].China Mining Magazine,2009,18(5):53-55,63.
12 朱旭波.地下金属矿岩体质量评价与采场结构参数优化研究[D].长沙:中南大学,2011.
Zhu Xubo.Study on Quality Evaluation of Underground Metal Ore Mass and Optimization of Stope Structure Parameters[D].Changsha:Central South University,2011.
13 欧任泽,何立夫.基于3D-σ有限元法的采场结构参数优化[J].有色金属(矿山部分),2019,71(4):5-11.
Renze Ou,He Lifu.Optimization of stope structure parameters based on 3D-σ finite element method[J].Nonferrous Metals(Mine Section),2019,71(4):5-11.
14 周富华,徐学员,徐宏伟.内蒙古某铅锌矿采场结构参数优化[J].现代矿业,2018,34(11):69-72.
Zhou Fuhua,Xu Xueyuan,Xu Hongwei.Optimization of the stope structural parameters of a Pb-Zn mine in Inner Mongolia[J]. Modern Mining,2018,34(11):69-72.
15 刘建东,解联库,曹辉.大规模充填采矿采场稳定性研究与结构参数优化[J].金属矿山,2018,47(12):10-13.
Liu Jiandong,Xie Lianku,Cao Hui.Study on structural parameters optimization and stability of stope for large-scale backfill mining[J].Metal Mine,2018,47(12):10-13.
16 曾杨,刘白璞,邓飞,等.淘锡坑钨矿采场结构参数优化[J].有色金属科学与工程,2018,9(3):70-75.
Zeng Yang,Liu Baipu,Deng Fei,et al.Research on optimizing structure parameters in Taoxikeng tungsten mine[J].Nonferrous Metals Science and Engineering,2018,9(3):70-75.
17 潘桂海,秦健春.高应力矿体充填法采场结构参数优化研究[J].有色金属(矿山部分),2018,70(1):20-23.
Pan Guihai,Qin Jianchun.Optimization of stope structure parameters with filling method in high-stress mine [J]. Nonferrous Metals(Mine Section),2018,70(1):20-23.
18 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
Shen Zhujiang.Theoretical Soil Mechanics[M]. Beijing:China Water Resources and Hydropower Press,2000.
19 刘洋树,李安平,王刚,等.VCR法采场结构参数优化的相似模型实验[J].有色矿冶,2011,27(2):10-15.
Liu Yangshu,Li Anping,Wang Gang,et al.Experimental investigation into effect of span on the stability of VCR stope using physical scale modeling[J].Non-Ferrous Min-ing and Metallurgy,2011,27(2):10-15.
20 杨帆,侯克鹏,谢永利.岩质高边坡岩体力学参数确定及稳定性研究[J].西安建筑科技大学学报(自然科学版),2011,43(6):845-853.
Yang Fan,Hou Kepeng,Xie Yongli.Research on methods to determine mechanical parameters and stability of rock mass from high rock slope[J].Journal of Xi’an University of Architecture and Technology(Natural Science Edition),2011,43(6):845-853.
21 古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.
Gu Desheng,Li Xibing.Modern Science and Technology of Metal Deposit Mining[M]. Beijing:Metallurgical Industry Press,2006.
22 孙杨,罗黎明,邓红卫.金属矿山深部采场稳定性分析与结构参数优化[J].黄金科学技术,2017,25(1):99-105.
Sun Yang,Luo Liming,Deng Hongwei.Stability analysis and parameter optimization of stope in deep metal mines[J].Gold Science and Technology,2017,25(1):99-105.
23 姜立春,王玉丹.复杂荷载作用下残采矿柱综合安全系数[J].中南大学学报(自然科学版),2018,49(6):1511-1518.
Jiang Lichun,Wang Yudan.Comprehensive safety factor of residual mining pillar under complex loads[J]. Journal of Central South University(Science and Technology),2018,49(6):1511-1518.
[1] Guicheng HE, Kexu CHEN, Bing DAI, Chengcheng WANG. Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture [J]. Gold Science and Technology, 2020, 28(4): 509-520.
[2] Yongyuan KOU, Guang LI, Long ZOU, Fengshan MA, Jie GUO. Study on Mining Method of Horizontal Pillar in the Middle Section of +1 000 m in Jinchuan No.2 Mining Area [J]. Gold Science and Technology, 2020, 28(3): 353-362.
[3] Xingxin NIE, Quan GAN, Jian GAO, Shanshan FENG. Research on Safety Roof Span in Continuous Mining of Gold Vein Group Under Synergistic Concept [J]. Gold Science and Technology, 2020, 28(3): 337-344.
[4] Shibo YU, Xiaocong YANG, Ye YUAN, Zhixiu WANG. Research on Destress Effect of Ground Pressure Control for the Time-space Mining Sequence at Depths [J]. Gold Science and Technology, 2020, 28(3): 345-352.
[5] Rui HUANG,E WU,Lin WU. Study on the Influence of Altitude on Smoke Propagation Law in Mine Roadway Fire [J]. Gold Science and Technology, 2020, 28(2): 293-300.
[6] Qinli ZHANG,Chaoyu JIANG,Xiang GAO,Bin LIU. Study on Optimization of Structural Parameters of Hexagonal Mining Method with Large Cross-section [J]. Gold Science and Technology, 2020, 28(1): 42-50.
[7] Long TIAN,Zhiyong ZHOU,Jianhong CHEN. Numerical Simulation of Temperature Distribution in Mining Area of High Temperature Mine with Auxiliary Ventilation [J]. Gold Science and Technology, 2020, 28(1): 61-69.
[8] Yuan GAO,Qingfa CHEN,Tenglong JIANG. Research on Three-Dimensional Numerical Model Construction Method and Cemented Filling Treatment of Complex Cavities in Daxin Manganese Mine [J]. Gold Science and Technology, 2019, 27(6): 851-861.
[9] Qinli ZHANG,Yufei ZHAO,Shuai RONG,Qian KANG. Optimization of Gently Inclined Thin Vein Mining Method Based on Variable Weight Theory and TOPSIS [J]. Gold Science and Technology, 2019, 27(6): 844-850.
[10] Jun TIAN, Jianpo LIU, Yong YANG, Changyin ZHANG. Study on the Failure Law of Backfill Induced by Blasting Disturbance During Cut and Fill Mining Process [J]. Gold Science and Technology, 2019, 27(5): 687-695.
[11] Enxiang SONG, Qiang LI, Jing ZHANG, Kang PENG. Research and Application of Artificial False Bottom in Mining of Orebody in Alteration Zone [J]. Gold Science and Technology, 2019, 27(5): 722-730.
[12] Jiacong JIN,Qingfa CHEN. Innovative Mindsets and Innovative Techniques of Synergetic Mining Methods [J]. Gold Science and Technology, 2019, 27(5): 712-721.
[13] Tianhang ZHANG, Xingdong ZHAO, Huaibin LI, Yifan ZHAO, Shujing ZHANG. Continuous Dry Filling of Long Room Method for Steeply Inclined and Medium Thick Orebody [J]. Gold Science and Technology, 2019, 27(5): 704-711.
[14] Shijiao YANG,Zhihui WANG. Numerical Simulation on Stability of Shallow-buried Goaf Group with Overlying Highway [J]. Gold Science and Technology, 2019, 27(4): 505-512.
[15] Feng LIU,Zhaokun WANG,Fengshan MA,Bo WANG,Jianbo WANG,Chunlei DONG. Current Situation and Prospect of Destressing Techniques in Deep Mine [J]. Gold Science and Technology, 2019, 27(3): 425-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[2] YI Cun-Chang, CANG En-Guang. [J]. J4, 2010, 18(4): 58 -61 .
[3] LIU Jin-Feng, LIU Mo-Jiang, LI Ding-Kun, LI Tian-Dong. [J]. J4, 2010, 18(4): 80 -81 .
[4] ZHANG YinFei. Discussion on M ineralization Regularity of the Eighth Ore Body of Shuangwang Gold Deposit, Shaanx i Prov ince[J]. J4, 2008, 16(1): 35 -38 .
[5] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[6] JIANG Qi, WANG Rong-Chao. [J]. J4, 2010, 18(4): 37 -40 .
[7] . [J]. J4, 2010, 18(4): 82 .
[8] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .
[9] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[10] LIU Xin-Hui, LIU Jia-Jun, CHEN Cai-Hua. [J]. J4, 2010, 18(4): 6 -11 .