img

Wechat

Adv. Search

Gold Science and Technology ›› 2021, Vol. 29 ›› Issue (3): 421-432.doi: 10.11872/j.issn.1005-2518.2021.03.183

• Mining Technology and Mine Management • Previous Articles    

Numerical Simulation of Backfill Strength Based on Optimization Results of Stope Structural Parameters

Lulu XU(),Qinli ZHANG(),Ru FENG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-10-10 Revised:2021-01-05 Online:2021-06-30 Published:2021-07-14
  • Contact: Qinli ZHANG E-mail:2298499523@qq.com;zhangqinlicn@126.com

Abstract:

With the construction of exploration and mining engineering and mining preparation engineering,the industrial orebody is gradually exposed.Compared with the exploration report,the shape of the orebody has changed greatly:(1)The thickness of the orebody becomes thinner and the grade is improved;(2)The stability of the orebody is poor,especially the soft and weak fault gouge exists in the hanging wall of most sections of the orebody.Based on the deterioration of ore occurrence conditions,if the open stope method recommended by the original preliminary design continues to be used,it will lead to low recovery rate,high dilution rate,poor safety and high safety production pressure.In order to adapt to the changed orebody occurrence conditions and solve the above-mentioned safety and economic problems existing in the preliminary design recommended open stope method,the open stope method is changed into a filling method with better safety,higher recovery rate and more environment-friendly.At the same time,reasonable stope structure parameters can effectively control the displacement of rock mass,improve the stress distribution of surrounding rock,and improve the stability of stope.In order to determine the optimal structural parameters of the stope in Gaoerqi lead zinc mine,five stope structure models were established according to the mine geological conditions and orebody occurrence state. The numerical simulation was carried out by the finite element software ANSYS.Comprehensive consideration of the tensile stress, compressive stress and displacement changes of the roof,inter-column,and filling body column,the safety factor is introduced to compare and analyze the simulation schemes.The results show that:Tensile stress occurs stress concentration at the boundary of the model;Compressive stress concentration occurs near the two ends of the stope;Displacement increases gradually with the increase of goaf span;The final optimized stope structure parameter is 75.0 m×6.0 m×1.8 m according to the factors of safety,economy and technology.However,due to the fact that the filling station has not been built,the goaf of one-step stoping can not be filled in time,the exposure time of roof is long,and the risk of roof collapse increases.It is proposed to adopt the one-step 3.5 m-wide strip tight mining method.Due to the increase of stope width in one step,the requirements for the strength of filling body have changed.The stope structure parameters to be adopted in the transition stage of the mine are:Room 75.0 m×3.5 m×1.8 m,pillar 75.0 m × 6.0 m×1.8 m.In order to determine the matching strength of filling body,the numerical simulation was carried out again,and the optimal strength range of filling body was determined to be 1.2~1.4 MPa.The practice in the transition stage of the mine shows that the scheme provides safe operation conditions and achieves good economic benefits,which has reference significance for similar mines.

Key words: stope structure parameters, numerical simulation, filling body strength, ANSYS simulation, stress distribution, displacement change

CLC Number: 

  • TD853

Fig.1

Schematic diagram of filling mining method of small section and strip close connection"

Table 1

Data summary of mechanical parameters"

组别弹性模量Em/GPa抗压强度σm/MPa抗拉强度σt/MPa密度/(kg·m-3泊松比u黏结力Cm/MPa内摩擦角φm/(°)
上盘4.4416.64.52 8000.278.1635.0
矿体7.9735.28.43 1600.3612.1038.0
下盘5.1318.74.92 8000.339.1036.0
充填体0.191.160.21 9400.240.2037.7

Table 2

Numerical simulation scheme"

方案编号长度/m宽度/m高度/m暴露面积/m2
17541.8300
27561.8450
37581.8600
475101.8750
575121.8900

Fig.2

Schematic diagram of numerical model"

Table 3

Numerical simulation summary of compressive stress and tensile stress of roof,pillar and filling column of each model"

状态区域方案编号模拟压应力值/Pa许用压应力值/Pa安全系数K稳定性模拟拉应力值/Pa许用拉应力值/Pa安全系数K稳定性

顶板1-11.53E+051.66E+07108.55稳定1.83E+054.50E+0624.59稳定
1-22.04E+051.66E+0781.40稳定2.58E+054.50E+0617.44稳定
1-32.92E+051.66E+0756.86稳定5.05E+054.50E+068.91稳定
1-49.76E+051.66E+0717.01稳定9.55E+054.50E+064.71稳定
1-53.20E+061.66E+075.19稳定2.70E+064.50E+061.66稳定
矿柱1-15.25E+063.52E+076.70稳定3.12E+068.40E+062.69稳定
1-26.34E+063.52E+075.55稳定4.06E+068.40E+062.07稳定
1-39.55E+063.52E+073.69稳定5.53E+068.40E+061.52稳定
1-42.40E+073.52E+071.47临界9.07E+068.40E+060.93不稳定
1-53.58E+073.52E+070.98不稳定1.10E+078.40E+060.77不稳定

顶板1-11.93E+051.66E+0786.19稳定5.70E+054.50E+067.89稳定
1-24.24E+051.66E+0739.19稳定8.80E+054.50E+065.11稳定
1-35.03E+051.66E+0733.03稳定1.45E+064.50E+063.10稳定
1-48.90E+051.66E+0718.66稳定3.88E+064.50E+061.16临界
1-51.07E+061.66E+0715.57稳定4.55E+064.50E+060.99不稳定

充填

体柱

1-11.15E+051.16E+0610.06稳定9.60E+042.00E+052.08稳定
1-21.47E+051.16E+067.88稳定1.13E+052.00E+051.77稳定
1-32.21E+051.16E+065.24稳定1.53E+052.00E+051.31临界
1-43.01E+051.16E+063.85稳定1.96E+052.00E+051.02临界
1-57.81E+051.16E+061.48临界2.32E+052.00E+050.86不稳定

Table 4

Summary of displacement deformation values of roof,pillar and filling column of each model"

模型回采矿房回采矿柱
顶板/m矿柱/m底板/m顶板/m充填 体柱/m底板/m
1-10.0078690.0062710.0044670.0143720.0129320.010385
1-20.0083260.0070820.0049210.0212350.0156870.011850
1-30.0096030.0090450.0052390.0235240.0202930.014055
1-40.0217910.0237610.0124670.0290200.0248660.019020
1-50.0282760.0270800.0192190.0403540.0276300.030965

Fig.3

Maximum tensile stress and compressive stress nephogram of roof, pillar and floor in model 1-1"

Fig.4

Maximum tensile and compressive stress nephogram of roof, filling column and floor in model 1-1"

Fig.5

Numerical model diagram"

Table 5

Parameters of numerical simulation scheme"

方案编号分步矿柱宽度/m采场长度/m采空区高度/m充填体28 d强度/MPa
16751.81.10E+06
26751.81.20E+06
36751.81.30E+06
46751.81.40E+06
55751.81.00E+06
65752.81.10E+06
75753.81.20E+06
85754.81.30E+06

Table 6

Summary of tensile and compressive stress values of filling body column of each model"

状态分步矿柱宽度/m方案 编号模拟压应力值/Pa许用压应力值/Pa安全 系数稳定性模拟拉应力值/Pa许用拉应力值/Pa安全 系数稳定性
分步矿柱回采611.76E+051.10E+066.25稳定1.54E+052.30E+051.49临界
21.97E+051.20E+066.09稳定1.62E+052.60E+051.60稳定
32.01E+051.30E+066.47稳定1.84E+052.90E+051.58稳定
42.09E+051.40E+066.70稳定1.83E+053.20E+051.75稳定
551.47E+051.00E+066.80稳定1.44E+052.00E+051.39临界
61.55E+051.10E+067.10稳定1.51E+052.30E+051.52稳定
71.61E+051.20E+067.45稳定1.63E+052.60E+051.60稳定
81.76E+051.30E+067.39稳定1.72E+052.90E+051.69稳定

Fig.6

Maximum tensile stress and compressive stress nephogram of filling body column of each model"

Chen Hui,Wang Teng,Ma Zhenqian,al et,2020.Optimization of structural parameters of gold stope under “three soft” conditions[J].China Mining,29(4):141-145.
Ding Mingfei,Wang Zhuo,Wang Dawei,al et,2014.Optimization scheme of mining method for gently inclined extremely thin orebody[J].Gold Science and Technology,22(1):56-59.
Fu Yuhua,Zhan Fei,Li Yong,2017.Study on structural parameter optimization in the stope combination of open pit and underground mining[J].China Mining,26(1):83-87.
Gao Mingjie,Li Shouzheng,Wang Yin,al et,2013.Study of mining method for complicated inclined and thin vein of Jigezhuang gold mine in Shangdong Province[J].Gold Science and Technology,21(1):49-52.
Guo Q F,Ren F H,Miao S J,al et,2012.Application of fuzzy comprehensive evaluation in stope structural parameters optimization[J].Applied Mechanics and Materials,256/257/258/259:271-275.DOI:10.4028/www.scientific.net/AMM.256-259.271.
doi: 10.4028/www.scientific.net/AMM.256-259.271
Lan Ming,Liu Zhixiang,Li Xibing,al et,2018.Optimization of stope structural parameters of secondary filling method in medium and deep hole caving stage[J].Journal of Central South University (Natural Science Edition),49(4):933-939.
Li Qiyue,Liu Kai,Li Xibing,2016.Sublevel filling method for a heavy orebody in deep mining based on collaborative stoping[J].Journal of Engineering Science,38(11):1515-1521.
Li X X,Li K G,2014.Optimization of stope structural parameters in phosphorite mine and its stability analysis[J].Applied Mechanics and Materials,580/581/582/583:1268-1272.DOI:10.4028/www.scientific.net/AMM.580-583.1268.
doi: 10.4028/www.scientific.net/AMM.580-583.1268
Heidarzadeh S,Saeidi A, Rouleau A,2019.Evaluation of the effect of geometrical parameters on stope probability of failure in the open stoping method using numerical modeling[J].International Journal of Mining Science and Technology,29(3):399-408.
Liu Dong,Shao Anlin,Jin Changyu,al et,2019.Numerical model building for broken ore body and optimization of stope structural parameters[J].Journal of Central South University(Natural Science Edition),50(2):437-444.
Liu Ke,Zhang Mingwu,Wang Peng,2009.Research and application of open stope mining method without sill pillar[J].Mining Engineering,7(1):20-22.
Long Keming,Wang Liguan,2015.Optimization of stope structural parameters based on ANSYS-R method[J].Gold Science and Technology,23(6):81-86.
Ma Xiaoyun,2014.Study on Dynamic Effect and Stability Evolution Law of Rock Slope Excavation Unloading in Open Pit Mine[D].Qingdao:Qingdao University of Technology.
Peng Kang,Li Xibing,Peng Shuquan,al et,2011.Optimization of frame stope structure parameters based on response surface method in under-sea mining[J].Journal of Central South University (Natural Science Edition),42(8):2417-2422.
Qi C C,Fourie A,Chen Q S,2018.Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill[J].Construction and Building Materials,159:473-478.
Tang Lizhong,Deng Lifan,Jian Yinghua,2016.Study on optimization of stope structural parameters of sublevel open stope and subsequent filling mining method[J].Gold Science and Technology,24 (2):8-13.
Tian Minghua,2009.Research on Key Technology of Mechanized Upward Horizontal Slicing and Filling Mining Method for Gently Inclined Medium Thick Ore Body[D].Changsha:Central South University.
Wang Xiaoning,Cai Sijing,Qin Xinglang,2018.Optimization on the stope structure parameter for sublevel filling method in a gold mine of Xinjiang[J].Mining Research and Development,38(3):1-5.
Xie C Y,Lu H,Chao L,al et,2018.Numerical optimization of broken and difficult for stope mining in underground metal mines[J].IOP Conference Series:Earth and Environmental Science,208(1):012104. DOI:10.1088/1755-1315/208/1/012104.
doi: 10.1088/1755-1315/208/1/012104
Yang Yuping,Deng Xingxing,Feng Yan,2014.Optimization of mining method based on unascertainty measurement theory and AHP[J].Journal of Central South University(Natural Science Edition),45(11):3936-394 2.
Zhang L H,Wang J H,Xue L,al et,2018.Optimization of stope structural parameters based on Mathews stability graph probability model[J].Advances in Civil Engineering,2018(2):1-7. DOI:10.1155/2018/1754328.
doi: 10.1155/2018/1754328
Zhang Qinli,Jiang Chaoyu,Gao Xiang,al et,2020.Optimization of structural parameters of large section hexagonal drift mining method[J].Gold Science and Technology,28(1):42-50.
Zhang Qinli,Zhao Yufei,Rong Shuai,al et,2019.Optimization of gently inclined thin vein mining method based on variable weight theory and TOPSIS[J].Gold Science and Technology,27(6):844-850.
Zhao K,Gu S J,Yan Y J,al et,2018.Rock mechanics characteristics test and optimization of high-efficiency mining in Dajishan tungsten mine[J].Geofluids,(6):1-11.
Zhao K,Wang Q,Li Q,al et,2019.Optimization calculation of stope structure parameters based on Mathews stabilization graph method[J].Journal of Vibroengineering,21(4):1227-1239.
陈晖,王腾,马振乾,等,2020.“三软”条件下金矿采场结构参数优化研究[J].中国矿业,29(4):141-145.
丁明飞,王卓,王大为,等,2014.缓倾斜极薄矿体采矿方法优化方案[J].黄金科学技术,22(1):56-59.
付玉华,占飞,李勇,2017.露地联采采场结构参数优化研究[J].中国矿业,26(1):83-87.
高明洁,李守正,王寅,等,2013.山东吉戈庄金矿复杂倾斜极薄矿脉开采方法的研究[J].黄金科学技术,21(1):49-52.
兰明,刘志祥,李夕兵,等,2018.中深孔崩矿阶段嗣后充填法采场结构参数优化[J].中南大学学报(自然科学版),49(4):933-939.
李启月,刘恺,李夕兵,2016.基于协同回采的深部厚大矿体分段充填采矿法[J].工程科学学报,38(11):1515-1521.
刘冬,邵安林,金长宇,等,2019.地下破碎矿体数值计算模型的构建及采场结构参数优化[J].中南大学学报(自然科学版),50(2):437-444.
刘轲,张明武,王鹏,2009.无底柱空场采矿法的研究与应用[J].矿业工程,7(1):20-22.
龙科明,王李管,2015.基于ANSYS-R法的采场结构参数优化[J].黄金科学技术,23(6):81-86.
马孝云,2014.露天矿岩质边坡开挖卸荷动力效应及其稳定性演化规律的研究[D].青岛:青岛理工大学.
彭康,李夕兵,彭述权,等,2011.基于响应面法的海下框架式采场结构优化选择[J].中南大学学报(自然科学版),42(8):2417-2422.
唐礼忠,邓丽凡,翦英骅,2016.分段空场嗣后充填采矿法采场结构参数优化研究[J].黄金科学技术,24(2):8-13.
田明华,2009.缓倾斜中厚矿体机械化上向水平分层充填采矿法关键技术研究[D].长沙:中南大学.
王小宁,蔡嗣经,覃星朗,2018.新疆某金矿分段充填法采场结构参数优化[J].矿业研究与开发,38(3):1-5.
阳雨平,邓星星,冯岩,2014.基于未确知测度与层次分析法的采矿方法优选[J].中南大学学报(自然科学版),45(11):3936-3942.
张钦礼,蒋超余,高翔,等,2020.大断面六角形进路采矿法结构参数优化研究[J].黄金科学技术,28(1):42-50.
张钦礼,赵宇飞,荣帅,等,2019.基于变权重理论和TOPSIS的缓倾斜薄矿脉采矿方法优选[J].黄金科学技术,27(6):844-850.
[1] Jingkai JIA,Gun HUANG,Long WANG,Qiang CHENG,Libing ZHEN. Study on a New Method of Weakening End Effect in Uniaxial Compression Test [J]. Gold Science and Technology, 2021, 29(3): 382-391.
[2] Jin HUANG,Kewei LIU,Shaohu JIN. Numerical Simulation Study of High-strength Projectile Penetrating White Granite Target [J]. Gold Science and Technology, 2021, 29(3): 411-420.
[3] Weihua WANG,Jie LUO,Tian LIU,Zhenyu HAN. Particle Flow Simulation on Influence of Joint Roughness Coefficient on Stress Wave Propagation and Specimens Failure [J]. Gold Science and Technology, 2021, 29(2): 208-217.
[4] Xuebin XIE,Shan GAO,Jiang GUO,Yongfei YE. Numerical Simulation Study on the Response Law of Pressure Arch Height of Deep-buried Tunnel Under Seismic Dynamic Load [J]. Gold Science and Technology, 2021, 29(2): 226-235.
[5] Peng JIN,Kewei LIU,Xudong LI,Jiacai YANG. Numerical Simulation Study of Crack Propagation in Deep Rock Mass Under Water-coupling Blasting [J]. Gold Science and Technology, 2021, 29(1): 108-119.
[6] Jianhua HU,Le PANG,Xueliang WANG,Minghua ZHENG. Optimization of Roadway Support Parameters in Soft Broken Sections Based on Orthogonal Test [J]. Gold Science and Technology, 2020, 28(6): 859-867.
[7] Chenglong WANG,Chenglu HOU,Shanghuan YANG,Xingdong ZHAO. Control Technology of High Stress Broken Surrounding Rock in Kilometer Deep Shaft [J]. Gold Science and Technology, 2020, 28(6): 885-893.
[8] Zeyou LI, Rui HUANG, Shuqi ZHAO, Xue SHEN, E WU. Ventilation Method Optimization of Dust Extraction in an Excavation Roadway of High-altitude Mine [J]. Gold Science and Technology, 2020, 28(5): 743-752.
[9] Huaibin SU, Qinli ZHANG, Deming ZHANG, Changgen ZENG, Xiaojiang ZHU. Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine [J]. Gold Science and Technology, 2020, 28(4): 550-557.
[10] Guicheng HE, Kexu CHEN, Bing DAI, Chengcheng WANG. Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture [J]. Gold Science and Technology, 2020, 28(4): 509-520.
[11] Yongyuan KOU, Guang LI, Long ZOU, Fengshan MA, Jie GUO. Study on Mining Method of Horizontal Pillar in the Middle Section of +1 000 m in Jinchuan No.2 Mining Area [J]. Gold Science and Technology, 2020, 28(3): 353-362.
[12] Shibo YU, Xiaocong YANG, Ye YUAN, Zhixiu WANG. Research on Destress Effect of Ground Pressure Control for the Time-space Mining Sequence at Depths [J]. Gold Science and Technology, 2020, 28(3): 345-352.
[13] Xingxin NIE, Quan GAN, Jian GAO, Shanshan FENG. Research on Safety Roof Span in Continuous Mining of Gold Vein Group Under Synergistic Concept [J]. Gold Science and Technology, 2020, 28(3): 337-344.
[14] Rui HUANG,E WU,Lin WU. Study on the Influence of Altitude on Smoke Propagation Law in Mine Roadway Fire [J]. Gold Science and Technology, 2020, 28(2): 293-300.
[15] Long TIAN,Zhiyong ZHOU,Jianhong CHEN. Numerical Simulation of Temperature Distribution in Mining Area of High Temperature Mine with Auxiliary Ventilation [J]. Gold Science and Technology, 2020, 28(1): 61-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!