img

Wechat

Adv. Search

Gold Science and Technology ›› 2017, Vol. 25 ›› Issue (5): 47-56.doi: 10.11872/j.issn.1005-2518.2017.05.047

Previous Articles     Next Articles

Analysis on the Possible Failure Modes of Water Burst Prevention Structures of F1 Fault Caused by Undersea Mining in Sanshandao Gold Mine

MA Fengshan1,LI Kepeng1,DU Yunlong2,HOU Chenglu2,LI Wei2 ,ZHANG Guodong2   

  1. 1.Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing    100029,China;
    2.Sanshandao Gold Mine,Shandong Gold Mining(Laizhou) Co.,Ltd.,Laizhou    261442,Shandong,China
  • Received:2017-07-10 Revised:2017-08-26 Online:2017-10-30 Published:2018-02-12

Abstract:

Different mines generally have different water-inrush forms and mechanisms.Xinli mining area locates under sea floor,of Sanshandao gold mine.Some factors,such as hydrogeological condition,surrounding rock mechanics properties,orebody morphology,and the relative position to default decided water inrush mechanism which is different from that of other mines especially coal mine.The possible failure modes of seawater burst prevention structures are closely associated with the Quaternary clay aquiclude on top of orebody and the fault gouge aquiclude of F1.So the isolation layer breaking and the fault slipping of  F1 now are the possible water-inrush modes of Xinli mining area.Based on illuminating the essential attributes of the water burst prevention structures,and combined with proper hydrogeological structures of the Xinli seabed mine exploitation.Analysis of the possible failure modes of F1 in different working conditions were carried out by numerical simulation,The simulation results showed that when the mining scale of Xinli orebody was small,the slip range of  F1 was limited in the scope near the mined area and had no effect on the section of F1 where penetrating the reserved isolation layer.But with the increase of mining scale,F1  near the isolation layer would terminally slide.

Key words: Sanshandao gold mine, undersea mining, F1 ore-controlling fault, water burst prevention structure, numerical simulation, failure mode

CLC Number: 

  • TD807

[1] Yang Tianhong,Tang Chunan,Tan Zhihong,et al.State of the art of inrush models in rock mass failure and developing trend for prediction and forecast of groundwater inrush[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(2):268-277.[杨天鸿,唐春安,谭志宏,等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.]
[2] Li Liping,Lu Wei,Li Shucai,et al.Research status and developing trend analysis of the water inrush mechanism for underground engineering construction[J].Journal of Shandong University(Engineering Science),2010,40(3):104-112.[李利平,路为,李术才,等.地下工程突水机理及其研究最新进展[J].山东大学学报(工学版),2010,40(3):104- 112.]
[3] Wu Hao,Zhao Guoyan,Feng Shaowei,et al.Design on the size of waterproof pillar(rock) in subsea bedrock mining[J].The Chinese Journal of Geological Hazard and Control,2014,25(1):44-50.[吴浩,赵国彦,冯少维,等.滨海基岩矿床开采防水矿岩柱高度的确定[J].中国地质灾害与防治学报,2014,25(1):44-50.]
[4] Li Kepeng,Ma Fengshan,Guo Jie,et al.Numerical simulation of mine backfill and surrounding rock deformation when exploiting Sanshandao seabed gold mine[J].Gold Science and Technology,2016,24(4):73-80.[李克蓬,马凤山,郭捷,等.三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J].黄金科学技术,2016,24(4):73-80.]
[5] Cao Zhiwei,Zhai Juecheng.Rock Movement of “Three Under Mining”[M].Beijing:China Coal Industry Publishing House,1986.[曹志伟,翟厥成.岩层移动与“三下”采煤[M].北京:煤炭工业出版社,1986.]
[6] Li Xiaozhao,Zhang Guoyong,Luo Guoyi.Barrier effects cau-sed by fault on excavating-induced stress & deformation and mechanism of resulting groundwater inrush[J].Rock and Soil Mechanics,2003,24(2):220-224.[李晓昭,张国永,罗国熠.地下工程中由控稳到控水的断裂屏障机制[J].岩土力学,2003,24(2):220-224.]
[7] Sainoki A,Mitri H S.Dynamic modelling of fault-slip with Barton’s shear strength model[J].International Journal of Rock Mechanics and Mining Sciences,2014,67:155-163.
[8] Castro L A M,Carter T G,Lightfoot N.Investigating factors influencing fault-slip in seismically active structures[C].ROCKENG09:Proceedings of the 3rd CANUS Rock Mechanics Symposium,2009:4019.
[9] Li Xiaozhao,Luo Guoyi,Chen Zhongsheng.The mechanism of deformation and water conduction of fault due to excavation in water inrush in underground engineering[J].Chinese Journal of Geotechnical Engineering,2002,24(6):695-700.[李晓昭,罗国熠,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002,24(6): 695-700.]
[10] Guo Zhi.The mechanical characteristics of mine-controlled fault F1 on Sanshandao gold mine and reinforcement measures[J].Journal of Engineering Geology,1994,2(4):23-30.[郭志.三山岛金矿控矿断层F1的力学性质及补强措施[J].工程地质学报,1994,2(4):23-30.]
[11] Li Zhihua,Dou Linming,Lu Zhenyu,et al.Study of the fault slide destabilization induced by coal mining[J].Journal of Mining & Safety Engineering,2010,27(3):499-504.[李志华,窦林名,陆振欲,等.采动诱发断层滑移失稳的研究[J].采矿与安全工程学报,2010,27(3):499-504.]
[12] Li Xibing,Liu Zhixiang,Peng Kang,et al.Theory and practice of rock mechanics related to the exploitation of undersea metal mine[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):1945-1953.[李夕兵,刘志祥,彭康,等.金属矿滨海基岩开采岩石力学理论与实践[J].岩石力学与工程学报,2010,29(10):1945-1953.]

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!