img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (6): 930-943.doi: 10.11872/j.issn.1005-2518.2023.06.077

• Mining Technology and Mine Management • Previous Articles     Next Articles

Optimization and Comparative Experimental Study of Charge Structure of Water Medium Interval on Open-air Step

Honglu FEI(),Hainan JI(),Jie SHAN   

  1. Blasting Technology Research Institute of Liaoning University of Engineering and Technology,Fuxin 123000,Liaoning,China
  • Received:2023-05-22 Revised:2023-07-28 Online:2023-12-31 Published:2024-01-26
  • Contact: Hainan JI E-mail:feihonglu@163.com;13700879015@163.com

Abstract:

Aiming at the unfavorable blasting effects of the open-air step stripping blasting,such as large blocks and many root bottoms,the blasting effect of the open-air step was optimized by adopting the two-stage charge structure of water medium interval at the bottom of the blast hole and the middle part.To obtain the optimal two-stage charge structure of water medium interval in step stripping blasting of the open-pit mine,the blast hole pressure of the air-medium and water-medium interval charging were discussed from theoretical analysis,the unit consumption of water medium interval charge structure in Wujiata open-pit mine was optimized by experiments.On the basis of the selected optimal unit consumption,three groups of three-dimensional models of different water medium interval charge structure were established by using ANSYS/LS-DYNA numerical simu-lation software.The optimal water medium interval charge structure was selected by analyzing the stress change curve of rock mass,rock mass damage range,and free surface tensile crack area ratio at the bottom of the blast hole,the middle of the lower charge,and the upper position of the blast hole.The blasting effect was evaluated from the index of boulder yield by the blasting comparative experimental with the charge structure of air medium interval.The research results show that blasting with a charge structure of a water medium interval can significantly increase the blasting pressure and improve the rock-crushing effect.The optimal unit consumption of water medium interval charge structure blasting in Wujiata open-pit mine is 0.33~0.34 kg/m3,saving 0.03~0.04 kg/m3 unit consumption of explosives than before. The blasting of a charge structure with an upper water medium interval of 1 m and the lower water medium interval of 1 m has more stress on the rock mass and has a long duration,the damage is evenly distributed along the blast hole,the range is regular,and the free surface tensile crack area accounts for the highest proportion,and its blasting effect optimal.The blasting fragmentation indexes of the optimal water medium interval charge structure all show a good proportion.The research results can provide a reference for the application of water medium interval charge structure in open-pit step blasting.

Key words: charge structure, numerical simulation, water medium interval, open-air step, fragmentation analy-sis, blasting effect

CLC Number: 

  • TD235

Fig.1

Hole pressure of different coupling media"

Table 1

Optimization analysis of explosive unit consumption"

组别装药结构炸药单耗/(kg·m-3爆破效果
70 cm以上块度占比/%爆堆抛掷距离/m
对照组炸药(5.5 m)—空气(1.5 m)—炸药(2.5 m)—填塞(3.5 m)0.3713.225.0
试验组1炸药(5.4 m)—水(1.6 m)—炸药(2.5 m)—填塞(3.5 m)0.364.228.0
试验组2炸药(5.2 m)—水(1.8 m)—炸药(2.5 m)—填塞(3.5 m)0.357.526.5
试验组3炸药(5.0 m)—水(2.0 m)—炸药(2.5 m)—填塞(3.5 m)0.349.525.8
试验组4炸药(4.8 m)—水(2.2 m)—炸药(2.5 m)—填塞(3.5 m)0.3315.523.3

Fig.2

Schematic diagram of the two-stage water medium interval charging structure"

Fig.3

Measurement of fragmentation and blasting effect of explosive piles in test group 3"

Fig.4

One-half numerical model of different charge structures"

Fig.5

Limit surface of RHT model"

Fig.6

Compression process of brittle porous material"

Fig.7

Constitutive model of RHT"

Table 2

Parameters of rock model"

参数名称数值参数名称数值
密度ρ/(kg?m-32 400拉压强度比Ft*0.09
剪切模量/GPa26.7剪压强度比Fs*0.21
单轴抗压强度fc/MPa49Hugoniot多项式参数A1/GPa30.27
剪切模量缩减系数ξ0.5Hugoniot多项式参数A2/GPa48.59
状态方程参数T1/GPa25.45Hugoniot多项式参数A3/GPa31.04
状态方程参数B01.22拉压子午比参数Q00.6805
状态方程参数B11.22罗德角相关系数B0.0105
压实压力Plock/GPa6失效面参数A2.1
压碎压力Pcrush/MPa20.2失效面指数N0.637
拉伸应变率指数βt0.0115压缩应变率指数βc0.0083
压缩屈服面参数Gc*0.4残余应力强度参数Af1.61
拉伸屈服面参数Gt*0.7残余应力强度指数Nf0.6
损伤参数D10.04损伤参数D21
初始孔隙度α01.08孔隙度指数Np3

Table 3

Parameters of explosive material and state equation"

参数数值参数数值
密度ρ/(kg·m-3850R13.91
损伤参数D/(m·s-13 000R21.52
爆压P/GPa5.15ω0.33
A/GPa494s/(J·m-32.48×109
B/GPa1.89V1

Table 4

Parameters of stemming material model"

参数数值参数数值
密度ρ/(kg·m-32 130μ0.27
初始内能E/MPa10.4σ/MPa0.7

Table 5

Parameters of water material and state equation"

参数数值参数数值
ρ0/(kg·m-31 000γ00.5
C1 480α1.3937
S11.89E256
S23.91V1.0
S31.52

Fig.8

Stress cloud diagram of different charge structures"

Fig.9

Effective stress time-history curves of each unit with different charge structures"

Fig.10

Internal damage of rock mass"

Fig.11

Tensile cracks on free surface of different charge structures"

Table 6

Proportion of free surface tensile crack area of different charge structures"

装药结构自由面拉伸裂纹面积占比/%
18.39
20.77
20.35

Fig.12

Schematic diagram of different explosion areas"

Fig.13

Objective picture of intervals water bag"

Table 7

Blasting parameters of comparative test"

间隔介质炸药单耗/(kg·m-3炮孔直径/mm台阶高度/m排距/m孔距/m超深/m布孔方式延期时间
0.3417012571梅花形孔间45 ms,排间124 ms
空气0.3717012571梅花形孔间45 ms,排间124 ms

Fig.14

Fragmentation analysis diagram of blasting pile after blasting of air medium interval charge structure"

Fig.15

Fragmentation analysis diagram of blasting pile after blasting of water medium interval charge structure"

Fig.16

Data processing diagram of blasting fragmentation after blasting of air medium interval charge structure"

Fig.17

Data processing diagram of blasting fragmentation after blasting of water medium interval charge structure"

Table 8

Blasting fragmentation distribution of air medium and water medium interval charge"

参数空气介质间隔装药爆破块度分布/%水介质间隔装药爆破块度分布/%
<10 cm10~30 cm30~50 cm50~70 cm>70 cm<10 cm10~30 cm30~50 cm50~70 cm>70 cm
平均值18.2025.9825.2617.2113.3515.5433.0227.4218.795.23
图片A占比19.7027.9822.7316.2813.3115.4435.1827.1817.594.61
图片B占比16.7023.9727.8018.1313.4015.6530.8627.6519.985.86
Esen S, Onederra I, Bilgin H A,2003.Modelling the size of the crushed zone around a blasthole[J].International Journal of Rock Mechanics and Mining Sciences,40(4):485-495.
Fei Honglu, Liu Yu, Qian Qifei,et al,2020.Distribution of blasthole fracture in eccentric charge under in-situ stress[J].Gold Science and Technology,28(2):228-237.
Jang H, Handel D, Ko Y,et al,2018. Effects of water deck on rock blasting performance[J].International Journal of Rock Mechanics and Mining Sciences,112:77-83.
Kuang Zhiping, Yuan Xunkang,2012.The analysis and simulation for the strength parameters of RHT concrete model[J].Chinese Quarterly of Mechanics,33(1):158-163.
Li J C, Gao W X, Zhang S H,et al,2021.Numerical analysis and application of uncoupled coefficient of water sealed blasting on blasting effect[J].IOP Conference Series:Earth and Environmental Science,719(3):032035.
Li Qi, Wang Gaohui, Lu Wenbo,et al,2016.Influence of water level on the antiknock safety performance of concrete gravity dam[J].Journal of Vibration and Shock,35(14):19-26.
Li Wenjun, Zhang Xiaohua, Ke Sheng,et al,2018.Application research of blasting dust reduction technology in open-pit limestone mine[J].Engineering Blasting,24(5):72-77.
Liang Xiangqian,2013.Underwater Blasting Technology[M].Beijing:Chemical Industry Press.
Liu Jiangchao, Gao Wenxue, Wang Lintai,et al,2020.Numerical analysis on the charge structure optimization under hydraulic blasting and its application[J].Journal of Vibration and Shock,39(9):57-62.
Liu Jiangchao, Gao Wenxue, Zhang Shenghui,2021.Selection and optimization of charge structure of surrounding holes in tunnel excavating blasting[J].Blasting,38(3):38-44.
Lou Xiaoming, Wang Zhenchang, Chen Bigang,et al,2017.Initial shock pressure analysis for hole wall with air-decked charge[J].Journal of China Coal Society,42(11):2874-2883.
Riedel W, Thoma K, Hiermaier S,et al,1999.Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of 9th International Symposium on Interaction of the Effects of Munitions with Structures,May 03-07,1999,Berlin-Strausberg.
Wang H, Wang Z, Wang J,et al,2021.Effect of confining pressure on damage accumulation of rock under repeated blast loading[J].International Journal of Impact Engineering,(3):103961.
Wang Yijun, Pan Weihua, Yao Wenhui,et al,2020.Experimental study on new hydraulic blasting dust removal technology[J].Tunnel Construction,40(9):1360-1367.
Wang Yutao,2015.The Study of the Broken Model for Rock Mass Blasting Based on RHT Constitutive Equations[D].Beijing:China University of Mining and Technology(Beijing).
Wescott B L, Stewart D S, Davis W C,2005.Equation of state and reaction rate for condensed-phase explosives[J].Journal of Applied Physics,98(5):053514.1.
Xie Feng, Jiang Yaqin, Yu Deyun,et al,2020.Test and application of calcium conglomerate air-decked charge blasting[J].Blasting,37(4):63-68.
Xie L X, Lu W B, Zhang Q B,et al,2017.Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J].Tunnelling and Underground Space,66:19-33.
Xu Ying, Zong Qi,2000.Theoretical analysis on the parameters of smooth blasting soft mat layer charging construction[J].Journal of China Coal Society,(6):610-613.
Yin Z M, Wang X G, Wang D S,et al,2021.Analysis and application of stress distribution in 24-m high bench loosening blasting with axially uncoupled charge structure in Barun open-pit mine[J].IOP Conference Series:Earth and Environmental Science,804(2):022059.
Yuan W W, Su W, Wen X,et al,2019.Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress[J].International Journal of Rock Mechanics and Mining Sciences,124(C):104133.
Zhang Wenming, Wang Haibo, Li Wanfeng,et al,2023.Numerical simulation on rock breaking effect of circular shaped charge structure blasting[J].Science Technology and Engineering,23(25):10756-10763.
Zhu Hongbing, Lu Wenbo, Wu Liang,2007.Research on mechanism of air-decking technique in bench blasting[J].Rock and Soil Mechanics,28(5):986-990.
Zhu Qiang, Chen Ming, Zheng Bingxu,et al,2016.Distribution and control technology of rock damage induced by air-deck charge presplitting blasting[J].Chinese Journal of Rock Mechanics and Engineering,35(Supp.1):2758-2765.
Zuo Jinjing, Yang Renshu, Gong Min,et al,2023.On the distribution of explosion strain field and fracture field in segment charge[J].Explosion and Shock Waves,43(3):169-180.
费鸿禄,刘雨,钱起飞,等,2020.地应力作用下偏心装药的炮孔裂隙分布[J].黄金科学技术,28(2):228-237.
匡志平,袁训康,2012.RHT混凝土本构模型强度参数分析与模拟[J].力学季刊,33(1):158-163.
李麒,王高辉,卢文波,等,2016.库前水位对混凝土重力坝抗爆安全性能的影响[J].振动与冲击,35(14):19-26.
李文军,张晓华,柯升,等,2018.露天石灰石矿山爆破降尘技术应用研究[J].工程爆破,24(5):72-77.
梁向前,2013.水下爆破技术[M].北京:化学工业出版社.
刘江超,高文学,王林台,等,2020.水封爆破装药结构优化数值分析及其应用[J].振动与冲击,39(9):57-62.
刘江超,高文学,张声辉,2021.隧道掘进周边孔间隔装药结构选取及优化[J].爆破,38(3):38-44.
楼晓明,王振昌,陈必港,等,2017.空气间隔装药孔壁初始冲击压力分析[J].煤炭学报,42(11):2874-2883.
王轶君,潘卫华,姚文辉,等,2020.新型水封爆破除尘技术试验研究[J].隧道建设,40(9):1360-1367.
王宇涛,2015.基于RHT本构的岩体爆破破碎模型研究[D].北京:中国矿业大学(北京).
谢烽,江雅勤,余德运,等,2020.钙结砾岩空气间隔装药爆破试验及应用[J].爆破,37(4):63-68.
徐颖,宗琦,2000.光面爆破软垫层装药结构参数理论分析[J].煤炭学报,(6):610-613.
张文明,汪海波,李万峰,等,2023.圆弧形聚能装药结构爆破破岩效果数值模拟[J].科学技术与工程,23(25):10756-10763.
朱红兵,卢文波,吴亮,2007.空气间隔装药爆破机理研究[J].岩土力学,28(5):986-990.
朱强,陈明,郑炳旭,等,2016.空气间隔装药预裂爆破岩体损伤分布特征及控制技术[J].岩石力学与工程学报,35(增1):2758-2765.
左进京,杨仁树,龚敏,等,2023.分段装药爆炸应变场与裂隙场分布规律[J].爆破与冲击,43(3):169-180.
[1] Kaibin WANG, Qin LIU, Hongtao WANG. Study on the Load Transfer Characteristics and Influence Factors of Anchora-ge Segment of Pressure-type Anchor Cable [J]. Gold Science and Technology, 2024, 32(1): 123-131.
[2] Zefeng XU, Xiuzhi SHI, Rendong HUANG, Wenzhi DING, Xin CHEN. Study on Filling Pipeline Optimization Based on Full Pipe Transportation [J]. Gold Science and Technology, 2024, 32(1): 160-169.
[3] Jielin LI, Yiliang LIU, Yupu WANG, Zaili LI, Keping ZHOU, Chunlong CHENG. Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway [J]. Gold Science and Technology, 2024, 32(1): 63-74.
[4] Yu ZHANG, Wenji WANG, Jiaqi SUN, Yonggang XIAO. Fracture Performances of Bedding Structure Slate Under Dynamic Loading [J]. Gold Science and Technology, 2023, 31(5): 803-810.
[5] Wenfa SHAN, Xiancheng MAO, Zhankun LIU, Hao DENG, Jin CHEN, Wei ZHANG, Haizheng WANG, Xin YANG. Numerical Simulation of Metallogenic Processes of Dayingezhuang Gold Deposit in Jiaodong Peninsula and Its Prospecting Significance [J]. Gold Science and Technology, 2023, 31(5): 707-720.
[6] Yanan ZHAO, Yihang ZHAO, Zhongming JIANG, Hongmin ZHAO. Preliminary Study on Static and Dynamic Stability of Canister for High-level Radioactive Nuclear Waste Disposal Based on Discrete Element Method [J]. Gold Science and Technology, 2023, 31(4): 592-604.
[7] Duiming GUO,Guoqing LI,Jie HOU,Nailian HU. Optimization of Local Ventilation Parameters of Deep Mine Excavation Roadway Based on FLUENT [J]. Gold Science and Technology, 2022, 30(5): 753-763.
[8] Heng MA,Jiayi GAO,Shihu LI,Ke GAO. Influence of Jet Angle of Twin Parallel Air Curtains on the Tunnel Airflow [J]. Gold Science and Technology, 2022, 30(5): 743-752.
[9] Zhanxing ZHOU,Kewei LIU,Xudong LI,Xiaohui HUANG,Sizhou MA. Numerical Simulation of Dynamic Response of Tunnel Lining Under Oil Tank Explosion [J]. Gold Science and Technology, 2022, 30(4): 612-622.
[10] Weihua WANG,Yang LIU,Liwei ZHANG,Henggen ZHANG. Numerical Simulation of Homogeneous Rock Mass Damage Caused by Two-hole Simultaneous Blasting Based on RHT Model [J]. Gold Science and Technology, 2022, 30(3): 414-426.
[11] Lingzhi ZHONG,Xiancheng MAO,Zhankun LIU,Keyan XIAO,Chuntan WANG,Wu CHEN. Ore-controlling Effect of Structural Geometry Features in the Sanshandao Gold Belt,Jiaodong Peninsula,China: Insights from Numerical Simulation [J]. Gold Science and Technology, 2022, 30(3): 352-365.
[12] Liqiang CHEN,Guoyan ZHAO,Yang LI,Wenjie MAO,Chengkai DANG,Boyang FANG. Deep Roadway Support and Its Effect Evaluation Under Excavation Unloading Disturbance [J]. Gold Science and Technology, 2022, 30(3): 438-448.
[13] Xuan FU,Linqi HUANG,Jiangzhan CHEN,Yangchun WU,Xibing LI. Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine [J]. Gold Science and Technology, 2022, 30(1): 72-84.
[14] Dan HUANG,He CHEN,Zhijie ZHENG. Model of the Height of Overburden Fracture Zone Based on Void Conservation [J]. Gold Science and Technology, 2021, 29(6): 843-853.
[15] Hongwei DENG,Zhiming ZHONG,Guanglin TIAN. Numerical Simulation of Sectional Oxygen⁃Enrichment Ventilation in Plateau Mine [J]. Gold Science and Technology, 2021, 29(5): 698-708.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[2] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[3] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] CHEN Hua-Dun. [J]. J4, 2010, 18(4): 50 -53 .
[6] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[7] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[8] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[9] WANG Da-Beng, SONG Bing-Jian, HUI Ku-Meng. The Application of High Power IP Method for Searching Concealed Metallic Mine in Beishuiquan,Liaoning Province[J]. J4, 2010, 18(3): 76 -78 .
[10] LIU Qing-Guang, GAO Hai-Feng, HUANG Suo-Yang. The Application of PDA in Geology Department of Jiaojia Gold Mine[J]. J4, 2010, 18(3): 79 -82 .