img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (5): 753-763.doi: 10.11872/j.issn.1005-2518.2022.05.021

• Mining Technology and Mine Management • Previous Articles     Next Articles

Optimization of Local Ventilation Parameters of Deep Mine Excavation Roadway Based on FLUENT

Duiming GUO1,2(),Guoqing LI1,2(),Jie HOU1,2,Nailian HU1,2   

  1. 1.School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2.Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education of the People’s Republic of China, Beijing 100083, China
  • Received:2022-01-19 Revised:2022-05-06 Online:2022-10-31 Published:2022-12-10
  • Contact: Guoqing LI E-mail:guoduiming@163.com;qqlee@ustb.edu.cn

Abstract:

With the depletion of shallow resources,deep mining has become the development trend of mines.Compared with shallow mining,one of the difficulties of deep mining is high temperature and heat damage.The ventilation lines of deep mining are long and complex,resulting in poor ventilation of deep working face,and the heat can’t be discharged in time.It is complex and difficult to improve the thermal environment of working face with the help of ventilation global optimization,while local ventilation optimization is economical,fast and efficient,so it has become the first choice to improve the thermal environment of working face.The selection of ventilation parameters in traditional local ventilation optimization usually depends on on-site test,which leads to high cost and poor repeatability,and can’t meet the requirements of parameter optimization.With the develop-ment of computer,numerical simulation is applied to the field of ventilation,which provides a new means for the research of local ventilation optimization.Taking a large underground metal mine in China as the research object,the wind temperature of excavation roadway at -945 m level in the mine was measured.Based on the roadway section size,the roadway model was constructed by FLUENT software,and the initialization setting of the simulation was completed in combination with the roadway boundary conditions.By changing the local ventilation parameters,the cooling effects under different ventilation parameters were obtained by numerical simulation of different inlet air temperature,inlet air volume,duct erection height and outlet position.The ventilation schemes under the above different parameters were applied in -945 m horizontal excavation roa-dway.The reliability of the numerical simulation results was verified by comparing the simulated temperature with the measured temperature under different schemes.While selecting the local ventilation parameters with the best cooling effect,taking into account the economy of local ventilation and the safety of underground operation.Finally,the optimal local ventilation parameters with good cooling effect,economy,safety and suitable for deep shaft excavation roadway were obtained.The conclusions are as follows:The comparison between the simulation results and the measured data shows that the two results are in good agreement,which proves that the numerical simulation is reliable and can be extended to other deep level local ventilation and cooling research.The research method of combining numerical simulation and experimental verification is scientific and effective,and improves the shortcomings of high cost and low repeatability of traditional relying solely on experiments.Numerical simulation intuitively shows the distribution characteristics of tunnel air temperature.The optimized local ventilation parameters can effectively improve the high-temperature environment of deep excavation roadway,and have certain guiding significance for local ventilation and cooling in deep mine mining.

Key words: deep mining, excavation roadway, local ventilation, parameter optimization, numerical simulation, high temperature and heat damage

CLC Number: 

  • TD72

Fig.1

Schematic diagram of roadway section (a) and temperature survey point layout (b)"

Table 1

Air temperature distribution in roadway without local ventilation"

截面编号风温/℃
测点a测点b测点c测点d测点e
6030.630.730.730.530.6
5030.530.630.830.330.4
4030.330.530.530.330.2
3030.130.330.330.230.1
2030.030.130.229.930.0
1029.830.030.029.729.7
029.829.829.929.529.5

Fig.2

Physical model of excavation roadway"

Fig.3

Mesh division of cross section and side of heading roadway"

Table 2

Initial conditions and related parameters"

序号参数具体数值或描述
1风流入口风筒出口
2风流出口巷道入口
3巷道壁面传热系数/(W·m-2·K-115
4速度类型绝对速度
5求解器稳态求解器
6湍流模型realizable k-ε模型
7出口类型自由出口
8巷道壁面无滑移
9入口风速/(m·s-120
10入风温度/℃24
11围岩温度/℃34.5

Fig.4

Distribution of tunnel temperature(a) and temperature of each section(b)"

Fig.5

Air flow distribution(a) and temperature change curves(b) under pressure ventilation conditions"

Fig.6

Change in average temperature of each section under different inlet air temperature conditions"

Fig.7

Change in average temperature of each section(a) and temperature difference of X=30 m section(b) under different ventilation air volume conditions"

Fig.8

Change in average temperature of each section under different duct erection heights conditions"

Fig.9

Change in average temperature of each section under different distances from the air outlet to the working face"

Fig.10

Airflow streamline diagram of roadway under different distances from air outlet to working face"

Fig.11

Comparison diagram of measured temperature and simulated temperature(points d and e)"

Table 3

Comparison of measured temperature and simulated temperature at each measuring point(℃)"

截面 位置/m测点a测点b测点c测点d测点e
实测值模拟值实测值模拟值实测值模拟值实测值模拟值实测值模拟值
026.20026.33626.10026.26626.40026.49626.50026.63626.70026.886
1025.90026.21625.80026.07626.00026.37626.10026.31626.30026.266
2026.10026.25226.10026.39226.20026.41226.20026.40226.20026.372
3026.30026.27626.10026.41626.30026.43626.20026.52626.50026.586
4026.10026.31226.20026.45226.40026.42226.40026.66226.60026.712
5026.20026.32826.50026.46826.20026.43826.40026.77826.70026.718
6026.30026.34026.30026.48026.40026.45026.70026.84027.00026.810

Table 5

Optimization results of local ventilation parameters"

参数优化结果解决的问题
风温/℃26确定考虑降温经济性的最佳入风温度
风量/(m3·s-13.39确定节约能源前提下的最佳风量
风筒高度/m1.8确定安全性和降温效果的最佳风筒高度
出风口位置/m9确定排污效果和降温效果最佳的出风口位置
Brodny J, Tutak M,2017.Analysis of influence of the air conditioning on the air parameters in underground mine workings[C]//17th International Multidisciplinary Scientific GeoConference & EXPO(SGEM 2017). Albena,Bulgaria:SGEM.
Candra K J, Pulung S A, Sadashiv M A,2014.Dust dispersion and management in underground mining faces[J].International Journal of Mining Science and Technology,(1):39-44.
Cao Yaping,2021.Numerical simulation study on influencing factors of ventilation and cooling in mine horizontal roadway[J].Inner Mongolia Coal Economy,(2):72-73.
Cui Yiyuan, Li Kun, Mei Guodong,et al,2021.Research progress of analysis and control technology of heat stress in deep mine[J].Nonferrous Metals(Mining Section),73(2):128-134.
Du Cuifeng, Xu Zhe, Tang Zhanxin,et al,2016.Numerical simulation of ventilation and cooling in excavation roadway and analysis of influencing factors[J].Metal Mine,45(2):151-155.
Gu Desheng, Zhou Keping,2012.Development theme of modern metal mining[J].Metal Mine,41(7):1-8.
Hargreaves D M, Lowndes I S,2007.The computational modeling of the ventilation flows within a rapid development drivage[J].Tunnelling and Underground Space Technology,(2):150-160.
Kurnia J C, Sasmito A P, Hassani F P,et al,2015.Introduction and evaluation of a novel hybrid brattice for improved dust control in underground mining faces:A computational study[J].International Journal of Mining Science and Technology,(4):537-543.
Li Meng, Wei Wei, Peng Bin,et al,2020.Analysis of common existing of high temperature mine operation area and discussion on cooling technology[J].Hunan Nonferrous Metals,36(4):1-4,27.
Li Yanbo, Huang Shouyuan, Li Gang,et al,2011.Study on numerical simulation of thermal environment on heading face with extraction local ventilation[J].China Energy and Environmental Protection,(9):12-14,42.
Li Yong, Chu Zhaoxiang, Ji Jianhu,et al,2014.Numerical simulation of airflow and temperature field in excavation roadway[J].Coal Science and Technology,(Supp.1):142-145,148.
Long Tengteng, Zhou Keping, Chen Qingfa,et al,2008.A simulated study on the ventilation effect of the heading face based on PMV index[J].Journal of Safety and Environment,(3):122-125.
Lowndes I S, Crossley A J, Yang Z Y,2004.The ventilation and climate modelling of rapid development tunnel drivages[J].Tunnelling and Underground Space Technology,(2):139-150.
Mo Supeng, Chen Lei,2020.Investigation on the distribution law of high temperature heat damage in a mine in Guangxi[J].Modern Mining,36(7):226-228.
Sasmito A P, Birgersson E, Ly H C,et al,2013.Some approaches to improve ventilation system in underground coal mines en-vironment—A computational fluid dynamic study[J].Tunnelling and Underground Space Technology,(34):82-95.
Sasmito A P, Kurnia J C, Birgersson E,et al,2015.Computational evaluation of thermal management strategies in an underground mine[J].Applied Thermal Engineering,(90):1144-1150.
State Administration for Market Regulation,Standardization Administration,2020. Safety regulations for metal and nonmetal mines: [S].Beijing:Standards Press of China.
Sun Yong, Wang Wei,2012.Numerical simulation of thermal environment of ventilation for mine roadway heading face based on fluent software[J].Coal Science and Technology,(7):31-34.
Torano J, Torno S, Menendez M,et al,2011.Auxiliary ventilation in mining roadways driven with roadheaders:Validated CFD modelling of dust behaviour[J].Tunnelling and Underground Space Technology,(1):201-210.
Wala A M, Vytla S, Taylor C D,et al,2007.Mine face ventilation:A comparison of CFD results against benchmark experiments for the CFD code validation[J].Mining Engineering,(59):49-55.
Wei D Y, Du C F, Xu H Y,et al,2019.Influencing factors and correlation analysis of ventilation and cooling in deep excavation roadway[J].Case Studies in Thermal Engineering,(14):100483.
Xie Heping, Gao Feng, Ju Yang,et al,2017.Novel idea and disruptive technologies for the exploration and research of deep earth[J].Advanced Engineering Science,49(1):1-8.
Xin Song, Liu Shangxiao, Zhang Xiao,et al,2020.Influence of different ventilation parameters on cooling of driving face[J].Safety in Coal Mines,(10):112-117.
Zhang N N, Zhang C, Yuan S,2021.Numerical simulation study on optimization of spray cooling mode in high temperature operation[J].IOP Conference Series:Earth and Environmental Science,(714):042027.
Zhang Ruiming, Wei Dingyi, Du Cuifeng,et al,2018.Experimental study on ventilation and cooling in excavation roadway[J].Metal Mine,47(9):171-175.
Zhang Ruiming, Wei Dingyi, Du Cuifeng,et al,2019.Ventilation and cooling test and numerical simulation in excavation roadway[J].Industrial Safety and Environmental Protection,(9):51-54.
Zhou Z, Cui Y, Tian L,et al,2019.Study of the influence of ventilation pipeline setting on cooling effects in high-temperature mines[J].Energies,(21):4074.
Zhou Z, Hu P, Qi C,et al,2018.The influence of ventilation arrangement on the mechanism of dust distribution in Woxi Pithead[J].Shock and Vibration,2018:1-13.
曹亚平,2021.矿井水平巷道通风降温影响因素数值模拟研究[J].内蒙古煤炭经济,(2):72-73.
崔益源,李坤,梅国栋,等,2021.深井热害分析与控制技术研究进展[J].有色金属(矿山部分),73(2):128-134.
杜翠凤,徐喆,唐占信,等,2016.掘进巷道通风降温的数值模拟及影响因素分析[J].金属矿山,45(2):151-155.
古德生,周科平,2012.现代金属矿业的发展主题[J].金属矿山,41(7):1-8.
国家市场监督管理总局,国家标准化管理委员会,2020. 金属非金属矿山安全规程: [S].北京:中国标准出版社.
李猛,魏巍,彭斌,等,2020.高温矿井作业区域共性分析与降温技术探讨[J].湖南有色金属,36(4):1-4,27.
李艳波,黄寿元,李刚,等,2011.抽出式局部通风掘进面热环境数值模拟研究[J].中州煤炭,(9):12-14,42.
李勇,褚召祥,姬建虎,等,2014.掘进巷道风流流场和温度场数值模拟[J].煤炭科学技术,(增1):142-145,148.
龙腾腾,周科平,陈庆发,等,2008.基于PMV指标的掘进巷道通风效果的数值模拟[J].安全与环境学报,(3):122-125.
莫苏鹏,陈磊,2020.广西某矿井高温热害分布规律调查研究[J].现代矿业,36(7):226-228.
孙勇,王伟,2012.基于Fluent的掘进工作面通风热环境数值模拟[J].煤炭科学技术,(7):31-34.
谢和平,高峰,鞠杨,等,2017.深地科学领域的若干颠覆性技术构想和研究方向[J].工程科学与技术,49(1):1-8.
辛嵩,刘尚校,张逍,等,2020.不同通风参数对掘进工作面降温的影响[J].煤矿安全,(10):112-117.
张瑞明,魏丁一,杜翠凤,等,2018.掘进巷道通风降温试验研究[J].金属矿山,47(9):171-175.
张瑞明,魏丁一,杜翠凤,等,2019.掘进巷道通风降温试验及数值模拟研究[J].工业安全与环保,(9):51-54.
[1] Heng MA,Jiayi GAO,Shihu LI,Ke GAO. Influence of Jet Angle of Twin Parallel Air Curtains on the Tunnel Airflow [J]. Gold Science and Technology, 2022, 30(5): 743-752.
[2] Zhanxing ZHOU,Kewei LIU,Xudong LI,Xiaohui HUANG,Sizhou MA. Numerical Simulation of Dynamic Response of Tunnel Lining Under Oil Tank Explosion [J]. Gold Science and Technology, 2022, 30(4): 612-622.
[3] Weihua WANG,Yang LIU,Liwei ZHANG,Henggen ZHANG. Numerical Simulation of Homogeneous Rock Mass Damage Caused by Two-hole Simultaneous Blasting Based on RHT Model [J]. Gold Science and Technology, 2022, 30(3): 414-426.
[4] Lingzhi ZHONG,Xiancheng MAO,Zhankun LIU,Keyan XIAO,Chuntan WANG,Wu CHEN. Ore-controlling Effect of Structural Geometry Features in the Sanshandao Gold Belt,Jiaodong Peninsula,China: Insights from Numerical Simulation [J]. Gold Science and Technology, 2022, 30(3): 352-365.
[5] Liqiang CHEN,Guoyan ZHAO,Yang LI,Wenjie MAO,Chengkai DANG,Boyang FANG. Deep Roadway Support and Its Effect Evaluation Under Excavation Unloading Disturbance [J]. Gold Science and Technology, 2022, 30(3): 438-448.
[6] Xuan FU,Linqi HUANG,Jiangzhan CHEN,Yangchun WU,Xibing LI. Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine [J]. Gold Science and Technology, 2022, 30(1): 72-84.
[7] Dan HUANG,He CHEN,Zhijie ZHENG. Model of the Height of Overburden Fracture Zone Based on Void Conservation [J]. Gold Science and Technology, 2021, 29(6): 843-853.
[8] Yu TANG,Shaofeng WANG. Analysis on Rock Breakage Characteristic and Its Influence Factors of Conical Pick Under Uniaxial Confining Stress [J]. Gold Science and Technology, 2021, 29(5): 669-679.
[9] Hongwei DENG,Zhiming ZHONG,Guanglin TIAN. Numerical Simulation of Sectional Oxygen⁃Enrichment Ventilation in Plateau Mine [J]. Gold Science and Technology, 2021, 29(5): 698-708.
[10] Yue JING,Shaofeng WANG,Jintao LU. Thickness Prediction of the Excavation Damage Zone and Non-explosive Mechanized Mining Criterion [J]. Gold Science and Technology, 2021, 29(4): 525-534.
[11] Lulu XU,Qinli ZHANG,Ru FENG. Numerical Simulation of Backfill Strength Based on Optimization Results of Stope Structural Parameters [J]. Gold Science and Technology, 2021, 29(3): 421-432.
[12] Jingkai JIA,Gun HUANG,Long WANG,Qiang CHENG,Libing ZHEN. Study on a New Method of Weakening End Effect in Uniaxial Compression Test [J]. Gold Science and Technology, 2021, 29(3): 382-391.
[13] Jin HUANG,Kewei LIU,Shaohu JIN. Numerical Simulation Study of High-strength Projectile Penetrating White Granite Target [J]. Gold Science and Technology, 2021, 29(3): 411-420.
[14] Weihua WANG,Jie LUO,Tian LIU,Zhenyu HAN. Particle Flow Simulation on Influence of Joint Roughness Coefficient on Stress Wave Propagation and Specimens Failure [J]. Gold Science and Technology, 2021, 29(2): 208-217.
[15] Xuebin XIE,Shan GAO,Jiang GUO,Yongfei YE. Numerical Simulation Study on the Response Law of Pressure Arch Height of Deep-buried Tunnel Under Seismic Dynamic Load [J]. Gold Science and Technology, 2021, 29(2): 226-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Jie, QIN Ze-Li, XIE Wen-Bing, CA Bang-Yong. [J]. J4, 2010, 18(4): 22 -26 .
[2] SONG He-Min, FENG Chi-Li, DING Xian-Hua. Geological-Geochemical Charicteristics and Prospecting Direction of Jiaojiekou Mining Area, North Part of Taihang Mountain[J]. J4, 2010, 18(3): 54 -58 .
[3] LI Chu-Fang, XU Yong-An, CHAO Yin-Yin, WANG Mei-Juan, ZHANG Dai, LIU Jun, SUN Liang-Liang. Looking for Strata Bound Type Gold Deposit in Liaodong Metallogenic Belt[J]. J4, 2010, 18(3): 59 -62 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] CHEN Hua-Dun. [J]. J4, 2010, 18(4): 50 -53 .
[6] CUI Ting-Jun, DAI Ke-Sai, PENG Yong, FU Xing. Discussion on the Geological Characteristics and Metallogenic Regularity of the  Southern Edge of Qaidam Basin Gold Metallogenic Belt in Qinghai Province[J]. J4, 2010, 18(3): 63 -67 .
[7] YANG Meng-Rong, MAO Chang-Xian. Uncertainty Evaluation of Arsenic and Antimony in Chemical Prospecting Sa-mple by Atomic Fluorescence Spectrometry[J]. J4, 2010, 18(3): 68 -71 .
[8] SU Jian-Hua, LIU Shu-Lin. Study of Gold Extraction from Tail Solution with High Acid Content and Low Concentration[J]. J4, 2010, 18(3): 72 -75 .
[9] WANG Da-Beng, SONG Bing-Jian, HUI Ku-Meng. The Application of High Power IP Method for Searching Concealed Metallic Mine in Beishuiquan,Liaoning Province[J]. J4, 2010, 18(3): 76 -78 .
[10] HUANG Jun, WU Jiafu, LU RuKuai , XIA Liyuan. [J]. J4, 2010, 18(4): 1 -5 .