img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (3): 352-365.doi: 10.11872/j.issn.1005-2518.2022.03.018

• Mineral Exploration and Resource Evaluation • Previous Articles    

Ore-controlling Effect of Structural Geometry Features in the Sanshandao Gold Belt,Jiaodong Peninsula,China: Insights from Numerical Simulation

Lingzhi ZHONG1,2(),Xiancheng MAO1,2(),Zhankun LIU1,2,Keyan XIAO3,Chuntan WANG1,2,Wu CHEN1,2   

  1. 1.School of Geosciences and Info-physics, Central South University, Changsha 410083, Hunan, China
    2.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Ministry of Education), Central South University, Changsha 410083, Hunan, China
    3.MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2022-01-07 Revised:2022-04-06 Online:2022-06-30 Published:2022-09-14
  • Contact: Xiancheng MAO E-mail:lingzhi_zhong@qq.com;mxc@csu.edu.cn

Abstract:

The morphology,amounts and location of orebodies in the Sanshandao gold belt,Jiaodong Peninsula are closely related to fault.The orebodies are mostly hosted by the fault parts with the characteristics of gentle or dip changing from gentle to steep.In oder to explore the control effect of fault geometry on gold mineralization,the geological model (e.g.,fault zone,orebodies,wall rocks and cover) of the Sanshandao belt was constructed,and the numerical simulation was carried out by FLAC3D software.The simulation results show that the corners of the Sanshandao fault are prone to accumulate greater shear strain (up to 8% than wall rocks) and volumetric strain (up to 2% than wall rocks) in the striking direction,where occurs an expansion space. This results in the formation of local thick gold orebodies at the corner where with a included acute angle of the fault and the NE-SW principal compressive stress.In terms of the dip direction,the gentle parts where the fault zone changes from steep (dip angle greater than 60°) to gentle (dip angle in 30°~40°) occur the dialation (volume strain:1%~2%),while the steep parts occur the compression characteristics (volume strain:-1%~0). This differential stress distribution at different dip parts controls the discontinuous and intermittent distribution of orebodies along the dip direction.From a view of 3D,the ore-forming fluids in the Xinli segment,southern part of the Sanshandao belt,migrates from the SE areas at depth to NW at shallow,while the Sanshandao,Xiling,and Beibuhaiyu segments show a trend of flowing from NE to SW.This difference in fluid flow direction may be attributed to the bending fault intersurface formed by the co-operative deformation in strike and dip directions at Xinli controlling the SE dipping of the expansion zone.Therefore,the SE areas at depth in the Xinli segment,and the NE areas at depth in Sanshandao and Xiling segment have the good metallogenic potential.

Key words: structural geometry, orebody location, numerical simulation, Sanshandao gold belt, orebody laterallly, ore-froming fluid, Jiaodong region

CLC Number: 

  • P618.51

Fig.1

Geological map of the Jiaodong Peninsula gold district(a) and Sanshandao gold deposit(b)(modified after Yang et al.,2019;Liu et al.,2021c)"

Fig.2

Profile of exploration line in Sanshandao gold belt,Jiaodong Peninsula(modified after Song,2015)"

Fig.3

Principle of FLAC3D stress deformation-heat transfer-fluid flow coupling model"

Fig.4

3D model of the Sanshandao gold belt and geology body"

Fig.5

Tectonic stress background of numerical simulation model of the Sanshandao gold belt"

Table 1

Model physical parameters"

属性胶东群变质岩花岗岩断层破碎带
密度/(kg·m-32 6802 6502 6001 000
体积模量/Pa5.2×10105.5×10102.3×10102×109
剪切模量/Pa3.4×10103.8×10103×107
黏度/Pa3×1075×1063×103
内摩擦角/(°)30302030
膨胀角/(°)253
孔隙度0.10.10.2
渗透率/m22.6×10-162.1×10-161×10-12
热导率/(J·m-1·℃-12.22.74.00.6
热膨胀系数1.6×10-52.4×10-53×10-51.85×10-3
比热/(J·kg-1·℃-1803.0803.0803.04 185.0

Fig.6

Geological sketch and strain simulation results of -1 000 m middle section of Sanshandao fault"

Fig.7

Shear strain maps of different representative sections with 0.1% volume compression"

Fig.8

Shear strain maps of different representative sections with 2% volume compression"

Fig.9

Volume strain maps of different representative sections with 0.1% volume compression"

Fig.10

Volume strain maps of different representative sections with 2% volume compression"

Fig.11

Relationship among volumetric strain,fluid and gold deposits in Sanshandao fault surface"

An Wentong, Chen Jianping, Zhu Pengfei,2021. A two-way forecasting method based on numerical simulation of mineralization process for the prediction of concealed ore deposits[J]. Earth Science Frontiers,28(3):97-111.
Chen Yumin, Zhang Huafeng, Zhang Congying,et al,2019. Pyrite typomorphic characteristics:Implication for deep gold mineralization in the Sanshandao gold deposit,Jiaodong Peninsula[J]. Gold Science and Technology,27(5):637-647.
Cheng Nannan, Shi Mengyan, Hou Quanlin,et al,2021. Ar-Ar chronology of the brittle deformation age for the ore-controlling shear zones in the Jiaodong Peninsula and it’s constrains on gold mineralization[J]. Acta Petrologica Sinica,37(12):3656-3672.
Deng Hao, Wei Yunfeng, Chen Jin,et al,2021.Three-dimensional prospectivity mapping and quantitative analysis of structural ore-controlling factors in Jiaojia Au ore-belt with attention convolutional neural networks[J].Journal of Cen-tral South University (Science and Technology),52(9):3003-3014.
Deng J, Wang Q, Li G,et al,2015. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit,SW China[J]. Ore Geology Reviews,65:42-54.
Eldursi K, Chi G, Bethune K,et al,2020. New insights from 2- and 3-D numerical modelling on fluid flow mechanisms and geological factors responsible for the formation of the world-class Cigar Lake uranium deposit,Eastern Athabasca Basin,Canada[J]. Mineralium Deposita,56(7):1365-1388.
Ford A, Blenkinsop T G, Mclellan J G,2009. Factors affecting fluid flow in strike-slip fault systems:Coupled deformation and fluid flow modelling with application to the western Mount Isa Inlier,Australia[J]. Geofluids,John Wiley & Sons,Ltd,9(1):2-23.
Goldfarb R J, Santosh M,2014.The dilemma of the Jiaodong gold deposits:Are they unique?[J/OL]. Geoscience Frontiers,5(2):139-153.
Groves D I, Santosh M,2016. The giant Jiaodong gold province:The key to a unified model for orogenic gold deposits?[J/OL]. Geoscience Frontiers,7(3):409-417.
Guo Bin, Liu Shuai, Chen Zihui,2010. Research on geological characteristics and structural lithofacies of Sancang metallogenic belt in Laizhou,Shandong[J]. Mineral Resources and Geology,24(5):395-398.
Li P, Cai M,2018a. Distribution law of in situ stress field and regional stress field assessments in the Jiaodong Peninsula,China[J]. Journal of Asian Earth Sciences,166:66-79.
Li Z, Chi G, Bethune K M,et al,2017. Structural controls on fluid flow during compressional reactivation of basement faults:Insights from numerical modeling for the formation of unconformity-related uranium deposits in the Athabasca Basin,Canada[J]. Economic Geology,112(2):451-466.
Li Z, Chi G, Bethune K M,et al,2018b. Numerical simulation of strain localization and its relationship to formation of the Sue unconformity-related uranium deposits,eastern Athabasca Basin,Canada[J].Ore Geology Reviews,101:17-31.
Liu L, Cao W, Liu H,et al,2022. Applying benefits and avoiding pitfalls of 3D computational modeling-based machine learning prediction for exploration targeting:Lessons from two mines in the Tongling-Anqing district,eastern China[J]. Ore Geology Reviews,2022:104712.
Liu Rifu, Zhou Xin, Yulu Lü,et al,2019. Ore-controlling regularity and prospecting practice in the Sanshandao-Cangshang fault zone,Jiaodong area[J]. Geology and Exploration,55(2):528-541.
Liu X, Xiao C, Zhang S,et al,2021a. Numerical modeling of deformation at the Baiyun gold deposit,northeastern China:Insights into the structural controls on mineralization[J]. Journal of Earth Science,32(1):174-184.
Liu Z K, Chen J, Mao X C,et al,2021b. Spatial association between orogenic gold mineralization and structures revealed by 3D prospectivity modeling:A case study of the Xiadian gold deposit,Jiaodong Peninsula,China[J]. Natural Resources Research,30(6):3987-4007.
Liu Z K, Hollings P, Mao X,et al,2021c. Metal remobilization from country rocks into the Jiaodong-type orogenic gold systems,Eastern China:New constraints from scheelite and galena isotope results at the Xiadian and Majiayao gold deposits[J]. Ore Geology Reviews,134:104126.
Liu Z K, Mao X, Jedemann A,et al,2021d. Evolution of pyrite compositions at the Sizhuang gold deposit,Jiaodong Peninsula,Eastern China:Implications for the genesis of Jiao-dong-type orogenic gold mineralization[J]. Minerals,11(4):344.
Ma X, Zeng Q, Tao S,et al,2021. Mineralogical characteristics and in-situ sulfur isotopic analysis of gold-bearing sulfides from the Qilishan gold deposit in the Jiaodong Peninsula,China[J]. Journal of Earth Science,32(1):116-126.
Mao X C, Ren J, Liu Z K,et al,2019. Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit,Jiao-dong Peninsula,Eastern China:A case study of the Da-yingezhuang deposit[J].Journal of Geochemical Exploration,203:27-44.
Mao Xiancheng, Wang Mijun, Liu Zhankun,et al,2019. Quantitative analysis of ore-controlling factors based on exploration data of the Dayingezhuang gold deposit in the Jiaodong Peninsula[J]. Earth Science Frontiers,26(4):84-93.
Mao Xiancheng, Wang Qi, Chen Jin,et al,2020. Three-dimensional modeling of deep metallogenic structure in northwestern Jiaodong Peninsula and its gold prospecting significance[J]. Acta Geologica Sinica,41(2):166-178.
Ord A, Hobbs B E, Walshe J L,et al,2020. On the use of FLAC[M]//FLAC and Numerical Modeling in Geomechanics. Boca Raton:CRC Press: 119-122.
Poh J, Yamato P, Duretz T,et al,2020. Precambrian deformation belts in compressive tectonic regimes: A numerical perspective[J]. Tectonophysics,777:228350.
Song M C, Ding Z J, Zhang J J,et al,2021a. Geology and mineralization of the Sanshandao supergiant gold deposit(1 200 t)in the Jiaodong Peninsula,China:A review[J]. China Geology,4(4):686-719.
Song M C, Li J, Yu X F,et al,2021b. Metallogenic characteristics and tectonic setting of the Jiaodong gold deposit,China[J]. Solid Earth Sciences,6(4):385-405.
Song Mingchun,2015. Super-large gold deposit in offshore of Northern Sanshandao shovel-type and ladder-type fault upwelling-extensional Tectonic-magmatic background Jiao-dong-type gold deposits[J].Acta Geologica Sinica,89(2):365-383.
Song Yingxin, Li Shengrong, Shen Junfeng,et al,2021. Characteristics and prospecting significance of thermoluminescence patterns and cell parameters of quartz from the undersea gold deposit off northern Sanshandao,Jiaodong Peninsula[J]. Earth Science Frontiers,28(2):305-319.
Tripp G I, Vearncombe J R,2004. Fault/fracture density and mineralization:A contouring method for targeting in gold ex-ploration[J].Journal of Structural Geology,26(6):1087-1108.
Wang Sirui,2020. Structurl Hydrodynamics of Metallogenesis of Gold Deposits in Northwestern Jiaodong,Easten China[D].Beijing:China University of Geosciences(Beijing).
Wang Sirui, Yang Liqiang, Cheng Hao,et al,2020. Effect of basement structure on the spatial distribution of gold deposits: Structure stress transfer modeling of Jiaojia fault[J]. Acta Petrologica Sinica,36(5):1529-1546.
Wang Z, Xu Z, Cheng H,et al,2021. Precambrian metamorphic crustal basement cannot provide much gold to form giant gold deposits in the Jiaodong Peninsula,China[J]. Precambrian Research,354:106045.
Wilkins C, Quayle M,2021. Structural control of high-grade gold shoots at the reward mine,Hill End,New South Wales,Australia[J].Economic Geology,116(4):909-935.
Xiao Fan, Wang Kaiqi,2021. Fault and intrusion control on copper mineralization in the Dexing porphyry copper deposit in Jiangxi,China:A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling[J]. Earth Science Frontiers,28(3):190-207.
Yang Kuifeng, Zhu Jituo, Cheng Shenghong,et al,2017. Structural controls of the Sanshandao gold deposit in the northwestern Jiaodong district,China[J]. Geotectonica et Metal-logenia,41(2):272-282.
Yang L, Zhao R, Wang Q,et al,2018. Fault geometry and fluid-rock reaction: Combined controls on mineralization in the Xinli gold deposit,Jiaodong Peninsula,China[J]. Journal of Structural Geology,111:14-26.
Yang Liqiang, Deng Jun, Song Mingchun,et al,2019. Structure control on formation and localization of giant deposits:An example of Jiaodong gold deposits in China[J]. Geotectonica et Metallogenia,43(3):431-446.
Zhang Baolin, Guxian Lü, Yu Jianguo,2020. A comparative study of the characteristics of tectonic deformation lithofacies belts in different ore blocks of the Linglong gold orefield in Jiaodong and the deep ore-prospecting prognosis[J].Geological Bulletin of China,39(11):1681-1691.
Zhang L, Groves D I, Yang L Q,et al,2020a. Relative roles of formation and preservation on gold endowment along the Sanshandao gold belt in the Jiaodong gold province,China:Importance for province- to district-scale gold exploration[J]. Mineralium Deposita,55(2):325-344.
Zhang L, Weinberg R F, Yang LQ,et al,2020b. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula,China: A focused event at 120 ± 2 Ma during cooling of pregold granite intrusions[J].Economic Geology,115(2):415-441.
Zhang Y, Robinson J, Schaubs P M,2011. Numerical modelling of structural controls on fluid flow and mineralization[J].Geoence Frontiers,2(3):449-461.
Zhang Y, Schaubs P M, Sheldon H A,et al,2013. Modelling fault reactivation and fluid flow around a fault restraining step-over structure in the Laverton gold region,Yilgarn Craton,Western Australia[J].Geofluids,Wiley-Blackwell,13(2):127-139.
Zhao C, Reid L B, Regenauer-Lieb K,2012. Some fundamental issues in computational hydrodynamics of mineralization:A review[J]. Journal of Geochemical Exploration,112:21-34.
Zhao Pengfei, Wang Gongwen, Han Xiaomeng,et al,2017. Reserch into numerical simulation of FLAC3D ore-forming process Nanni Lake molybdenum deposit as an example[J]. China Mining Magazine,26 (Supp.1):286-297.
安文通,陈建平,朱鹏飞,2021.基于成矿过程数值模拟的隐伏矿双向预测研究[J].地学前缘,28(3):97-111.
陈玉民,张华锋,张聪颖,等,2019.黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J].黄金科学技术,27(5):637-647.
程南南,石梦岩,侯泉林,等,2021.胶东地区控矿剪切带脆性变形时代的Ar-Ar年代学及其对成矿的制约[J].岩石学报,37(12):3656-3672.
邓浩,魏运凤,陈进,等,2021.基于注意力卷积神经网络的焦家金矿带三维成矿预测及构造控矿因素定量分析[J].中南大学学报(自然科学版),52(9):3003-3014.
郭彬,刘帅,陈自辉,2010.山东莱州三仓成矿带地质特征与构造岩相研究[J]. 矿产与地质,24(5):395-398.
刘日富,周鑫,吕雨璐,等,2019.胶东三山岛—仓上断裂带控矿规律与找矿勘查实践[J].地质与勘探,55(2):528-541.
毛先成,王迷军,刘占坤,等,2019.基于勘查数据的胶东大尹格庄金矿床控矿地质因素定量分析[J].地学前缘,26(4):84-93.
毛先成,王琪,陈进,等,2020.胶西北金矿集区深部成矿构造三维建模与找矿意义[J].地球学报,41(2):166-178.
宋明春,2015.胶东三山岛北部海域超大型金矿床的发现及其构造—岩浆背景[J].地质学报,89(2):365-383.
宋英昕,李胜荣,申俊峰,等,2021.胶东三山岛北部海域金矿床石英热释光和晶胞参数特征及其找矿意义[J].地学前缘,28(2):305-319.
王偲瑞,2020.胶西北金矿床构造—流体成矿动力学[D].北京:中国地质大学(北京).
王偲瑞,杨立强,成浩,等,2020.基底构造对矿床定位的控制机制:焦家金矿带构造应力转移模拟[J].岩石学报,36(5):1529-1546.
肖凡,王恺其,2021.德兴斑岩铜矿床断裂与侵入体产状对成矿的控制作用:从力—热—流三场耦合数值模拟结果分析[J].地学前缘,28(3):190-207.
杨奎锋,朱继托,程胜红,等,2017.胶东三山岛金矿构造控矿规律研究[J].大地构造与成矿学,41(2):272-282.
杨立强,邓军,宋明春,等,2019.巨型矿床形成与定位的构造控制:胶东金矿集区剖析[J].大地构造与成矿学,43(3):431-446.
张宝林,吕古贤,余建国,等,2020.胶东玲珑金矿田不同矿段构造变形岩相带特征与深部找矿预测[J].地质通报,39(11):1681-1691.
赵鹏飞,王功文,韩小梦,等,2017.基于FLAC3D成矿过程数值模拟:以南泥湖钼矿床为例[J].中国矿业,26(增1):286-297.
[1] Xuan FU,Linqi HUANG,Jiangzhan CHEN,Yangchun WU,Xibing LI. Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine [J]. Gold Science and Technology, 2022, 30(1): 72-84.
[2] Dan HUANG,He CHEN,Zhijie ZHENG. Model of the Height of Overburden Fracture Zone Based on Void Conservation [J]. Gold Science and Technology, 2021, 29(6): 843-853.
[3] Hongwei DENG,Zhiming ZHONG,Guanglin TIAN. Numerical Simulation of Sectional Oxygen⁃Enrichment Ventilation in Plateau Mine [J]. Gold Science and Technology, 2021, 29(5): 698-708.
[4] Lulu XU,Qinli ZHANG,Ru FENG. Numerical Simulation of Backfill Strength Based on Optimization Results of Stope Structural Parameters [J]. Gold Science and Technology, 2021, 29(3): 421-432.
[5] Jingkai JIA,Gun HUANG,Long WANG,Qiang CHENG,Libing ZHEN. Study on a New Method of Weakening End Effect in Uniaxial Compression Test [J]. Gold Science and Technology, 2021, 29(3): 382-391.
[6] Jin HUANG,Kewei LIU,Shaohu JIN. Numerical Simulation Study of High-strength Projectile Penetrating White Granite Target [J]. Gold Science and Technology, 2021, 29(3): 411-420.
[7] Weihua WANG,Jie LUO,Tian LIU,Zhenyu HAN. Particle Flow Simulation on Influence of Joint Roughness Coefficient on Stress Wave Propagation and Specimens Failure [J]. Gold Science and Technology, 2021, 29(2): 208-217.
[8] Xuebin XIE,Shan GAO,Jiang GUO,Yongfei YE. Numerical Simulation Study on the Response Law of Pressure Arch Height of Deep-buried Tunnel Under Seismic Dynamic Load [J]. Gold Science and Technology, 2021, 29(2): 226-235.
[9] Peng JIN,Kewei LIU,Xudong LI,Jiacai YANG. Numerical Simulation Study of Crack Propagation in Deep Rock Mass Under Water-coupling Blasting [J]. Gold Science and Technology, 2021, 29(1): 108-119.
[10] Jianhua HU,Le PANG,Xueliang WANG,Minghua ZHENG. Optimization of Roadway Support Parameters in Soft Broken Sections Based on Orthogonal Test [J]. Gold Science and Technology, 2020, 28(6): 859-867.
[11] Chenglong WANG,Chenglu HOU,Shanghuan YANG,Xingdong ZHAO. Control Technology of High Stress Broken Surrounding Rock in Kilometer Deep Shaft [J]. Gold Science and Technology, 2020, 28(6): 885-893.
[12] Zeyou LI, Rui HUANG, Shuqi ZHAO, Xue SHEN, E WU. Ventilation Method Optimization of Dust Extraction in an Excavation Roadway of High-altitude Mine [J]. Gold Science and Technology, 2020, 28(5): 743-752.
[13] Huaibin SU, Qinli ZHANG, Deming ZHANG, Changgen ZENG, Xiaojiang ZHU. Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine [J]. Gold Science and Technology, 2020, 28(4): 550-557.
[14] Guicheng HE, Kexu CHEN, Bing DAI, Chengcheng WANG. Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture [J]. Gold Science and Technology, 2020, 28(4): 509-520.
[15] Yongyuan KOU, Guang LI, Long ZOU, Fengshan MA, Jie GUO. Study on Mining Method of Horizontal Pillar in the Middle Section of +1 000 m in Jinchuan No.2 Mining Area [J]. Gold Science and Technology, 2020, 28(3): 353-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!