img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 689-697.doi: 10.11872/j.issn.1005-2518.2023.04.064

• 采选技术与矿山管理 • 上一篇    下一篇

贵州某卡林型金矿精锐微泡浮选生产实践

彭科淇(),周瑞仙   

  1. 贵州紫金矿业股份有限公司,贵州 贞丰 562200
  • 收稿日期:2022-05-10 修回日期:2022-06-12 出版日期:2023-08-30 发布日期:2023-09-20
  • 作者简介:彭科淇(1989-),男,贵州黔南人,助理工程师,从事矿山选冶技术与生产管理工作。634333106@qq.com

Production Practice of JRF Micro-bubble Flotation on Carlin Types Gold Ore in Guizhou

Keqi PENG(),Ruixian ZHOU   

  1. Guizhou Zijin Mining Co. ,Ltd. ,Zhenfeng 562200,Guizhou,China
  • Received:2022-05-10 Revised:2022-06-12 Online:2023-08-30 Published:2023-09-20

摘要:

贵州某卡林型金矿原矿金品位较低,有用矿物与脉石矿物嵌布粒度细,有害元素As和C含量较高,常规细磨浮选工艺金回收率仅为80.54%,尾矿金品位为0.97×10-6,浮选尾矿金损失较为严重。为了提高金精矿回收率,降低浮选尾矿金品位,开展了工艺矿物学及精锐微泡浮选工业试验研究。结果表明:常规细磨浮选尾矿中损失的金主要以-38 μm粒级的贫连生体形式损失,且金含量较高。常规细磨浮选无法捕收的微细颗粒矿物,是造成浮选尾矿金损失的主要原因。采用精锐微泡浮选技术对扫选Ⅳ的尾矿进行再选试验,结果表明:精锐微泡浮选对尾矿中-38 μm粒级的微细颗粒矿物有显著捕收效果,工艺优化后,金累计回收率为82.39%,提高了1.85个百分点,尾矿金品位为0.88×10-6,降低了0.09×10-6,浮选指标逐渐转好,提升了企业经济效益。

关键词: 金, 工艺矿物学, 精锐微泡浮选, 浮选尾矿, 回收率, 微细颗粒

Abstract:

The raw ore of a carlin gold mine in Guizhou has low gold grade,fine disseminated granularity of valuable minerals and gangue minerals,and high content of harmful elements arsenic and carbon.The recovery rate of conventional fine grinding flotation process is only 80.54% and the gold grade of tailing is 0.97×10-6,the loss of flotation tailing gold is relatively serious.In order to improve the recovery rate of gold concentrate and reduce the gold grade of flotation tailing,the process mineralogy study of secondary grinding classification overflow and flotation tailing was carried out to find out the gold distribution and loss.The results show that the gold lost in conventional fine grinding flotation tailing is mainly sulfide wrapped gold,which is mainly lost in the poor coenobium of -38 μm grade,accounting for 60.70%,and the lost sulfide gold content is high.Secondly,there are a small amount of dissociated monomer and a small amount of fusant,which are not fully recovered due to the fine particle size,and also lost in the tailings.The main cause of the loss of gold in flotation tailing is that the fine particle minerals cannot be caught by conventional fine grinding flotation.Combined with the site production situation,the JRF micro-bubble flotation was applied to rough selection Ⅰ operation and scavenge Ⅳ tailing for reselection test.The test results show that JRF micro-bubble flotation has a significant catching effect on some fine particle minerals in tailing,which can further strengthen the capture of sulfide poor coenobium of -38 μm grade and a amount dissociation monomer of -20 μm grade in conventional fine grinding flotation scavenge Ⅳ tailing,and reduce the loss of gold in flotation tailing.After the technical transformation,the cumulative recovery rate of gold is 82.39% and the tailing grade is 0.88×10-6.The recovery rate increased by 1.85 percentage points,and the tailing grade decreased by 0.09×10-6,and the flotation index was gradually improved,which increased the economic benefits of enterprises.

Key words: gold, process mineralogy, JRF micro-bubble flotation, flotation tailing, recovery, fine particles

中图分类号: 

  • TD923

表1

原矿多元素分析结果"

化学成分含量化学成分含量
Au3.98Pb0.01
Ag<0.01Zn0.01
TS5.80CaO7.49
S2-5.12MgO2.63
As0.41Al2O34.69
C6.03SiO237.03
C有机1.53TiO20.82
Fe8.22Hg0.001

表2

原矿金物相分析结果"

相别含量/(×10-6占比/%
合计3.990100.00
裸露金0.1654.14
碳酸盐和氧化物包裹金0.0581.44
硫化物和碳质包裹金3.53088.53
硅酸盐及其他包裹金0.2355.89

表3

原矿矿物组成及含量分析结果"

矿物名称含量矿物名称含量
黄铁矿9.63铁白云石31.05
毒砂0.34白云石5.70
磁黄铁矿0.01方解石9.19
黄铜矿0.01菱铁矿0.19
闪锌矿0.01石英30.78
方铅矿<0.01绢云母9.34
褐铁矿0.08绿泥石0.14
铁矾0.02锐钛矿1.52
重晶石0.05有机碳1.34
磷灰石0.26其他矿物0.34

图1

浮选工艺流程"

表4

二段磨矿分级溢流尾矿中硫化物的粒度—解离连生情况"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物及碳酸盐与硅酸盐及碳质0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.003.0418.6918.0629.1435.9315.890.98
x=10078.27--13.1122.6229.3912.470.68
80≤x<1005.220.644.580.020.342.342.320.20
50≤x<805.070.694.380.282.141.910.640.10
x<5011.441.719.734.654.042.290.460.00

表5

二段磨矿分级溢流尾矿粒度组成及金金属分布"

粒级/mm产率/%

金品位

/(×10-6

金金属分布率/%
个别负累积
合计100.00-4.02100.00
+0.07410.21100.002.396.07
-0.074+0.04513.7689.793.0110.29
-0.045+0.0386.9976.044.047.02
-0.038+0.0256.2569.044.807.46
-0.025+0.01018.8962.797.4735.10
-0.01043.9043.903.1234.06

表6

浮选尾矿中硫化物的粒度—解离连生情况"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物与碳酸盐与硅酸盐0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.006.1612.4859.4642.7935.3117.633.890.38
x=10021.90---12.816.421.730.940.00
80≤x<1007.613.220.364.031.023.562.570.460.00
50≤x<809.792.540.616.642.023.483.040.870.38
x<5060.700.4011.5148.7926.9421.8510.291.620.00

表7

浮选尾矿粒度组成及金金属分布"

粒级/mm

个别产率

/%

负累积产率

/%

金品位

/(×10-6

金金属分布率

/%

合计100.00-1.28100.00
+0.07411.81100.001.6615.26
-0.074+0.04514.8688.191.8721.63
-0.045+0.0385.6073.331.787.76
-0.038+0.0257.0367.731.659.03
-0.025+0.01019.5860.701.5122.95
-0.01041.1241.120.7323.37

图2

浮选尾矿中微细贫连生的黄铁矿"

图3

精锐微泡浮选机设备结构及原理示意图"

图4

粗选Ⅰ作业工业试验对比流程(精锐微泡浮选与常规浮选)"

表8

浮选设备型号及规格"

作业名称设备型号数量/台容积/m3
粗选BF-10710
扫选BF-101810
精选BF-454
微泡浮选JRF3217/4S110

表9

粗选Ⅰ作业中精锐微泡浮选与常规浮选的工业试验结果对比"

项目金品位/(×10-6产率/%金回收率/%
原矿精矿尾矿
精锐微泡浮选4.7118.861.1320.2080.89
常规细磨浮选4.2619.241.0717.5679.33

图5

精锐微泡浮选粗选Ⅰ精矿产品粒度分布曲线"

图6

常规浮选粗选Ⅰ精矿产品粒度分布曲线"

图7

扫Ⅳ尾矿再选工业试验对比流程(精锐微泡浮选与常规浮选)"

图8

技改前后工业试验指标对比"

表10

精锐微泡浮选精矿中硫化物的粒度—解离连生情况"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物和碳酸盐与硅酸盐0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.0010.7565.0733.5332.7123.329.660.78
x=10024.19--13.767.061.981.240.15
80≤x<1005.411.204.220.070.731.972.500.14
50≤x<807.231.295.940.622.103.001.250.26
x<5063.178.2654.9119.0822.8216.374.670.23

表11

精锐微泡浮选精矿粒度组成及金属分布"

粒级/mm

个别产率

/%

负累积产率

/%

金品位

/(×10-6

金金属分布率

/%

合计100.00-4.48100.00
+0.1063.35100.001.851.38
-0.106+0.07422.9396.653.6418.63
-0.074+0.04521.3873.724.6722.29
-0.045+0.0388.4352.344.718.86
-0.038+0.0255.2243.914.785.57
-0.02538.6938.695.0143.26

图9

精锐微泡浮选精矿中的微细贫连生体黄铁矿"

Ban Jinpeng, Chang Limin, Dai Yunpeng,et al,2019.Challenges and countermeasures for water kicks in tunnel drilling at Shuiyindong gold mine in southwest Guizhou[J].Exploration Engineering(Rock and Soil Drilling and Excavation Engineering),46(11):14-20.
Cao Yijun, Yan Xiaokang, Wang Lijun,et al,2017.The micro-turbulence intensification on the fine minerals flotation[J].Conservation and Utilization of Mineral Resources,(2):113-118.
Chang Zheng, Xiong Xin, Sun Xiaohua,2021.Experimental research on the mineral processing of refractory microfine disseminated arsenic and carbonaceous gold ore from Qinghai[J].Gold,42(1):55-58,63.
Chen Xiaodong,2021.Principle and practice of enhanced flotation performance of fine particles by JRF micro-bubble flotation machine[J].Nonferrous Metals(Mineral Processing Section),(1):112-116.
Chen Zhongxin,1997.Flotation machine[J].Foreign Mineralation Express,(13):11-18.
Cui Lifeng, Tian Shuguo, He Meili,2018.Experimental study on mineral processing of fine-grained and disseminated refractory carbon gold ore from Shuiyindong of Guizhou[J].Comprehensive Utilization of Minerals,(4):37-41.
Cui Yiqi, Chen Hailiang, Dong Peng,et al,2014.Research on the status of pretreatment techniques for carlin-type gold deposits[J].Gold,35(10):61-63.
Gui Q H, Wang S X, Zhang L B,2021.The mechanism of ultrasound oxidation effect on the pyrite for refractory gold ore pretreatment[J].Arabian Journal of Chemistry,14(4):103045.
Lee S, Sadri F, Ghahreman A,et al,2022.Enhanced gold recovery from alkaline pressure oxidized refractory gold ore after its mechanical activation followed by thiosulfate leaching[J].Journal of Sustainable Metallurgy,8(1):186-196.
Li Guo, Pi Qiaohui, Wei Chaowen,et al,2019.Occurrence of gold in Shuiyindong gold deposit,Guizhou[J].Journal of Guilin University of Technology,39(4):817-829.
Li X X, Zhu X Q, Ling Y T,et al,2017.Mineralogy and geochemistry characteristics and genetic implications for stratabound carlin-type gold deposits in southwest Guizhou,China[J].Journal of Nanoscience and Nanotechnology,17(9):6307-6317.
Liu Keyong,2016.Problems and suggestions existing in gold mine development in China[J].Modern State-Owned Enterprise Research,(24):202-203.
Liu Yuan, Hou Zhongjian, Li Dingwu,2013.Present situation of research into carlin-type gold deposits in China[J].Sichuan Geological Journal,33(2):132-136.
Man Lumei,2021.Research and exploration on the combined technology of beneficiation and metallurgy for complex carlin type gold deposits[J].China Nonferrous Metals Metallurgy,50(3):63-69.
Ng S W, Yang Y, Su X Z,et al,2022.Characterization of preg-robbing carbonaceous minerals from the Shuiyindong carlin-type gold deposit via spectroscopic techniques[J].Mining,Metallurgy and Exploration,39:169-188.
Qi Jian, Pan Chenglong, Tian Huimin,2021.Development trend and policy suggestions of China’s gold industry [J].China Market,(15):1-8.
Salazar-Campoy M M, Valenzuela-García J L, Quiróz-Castillo L S,et al,2020.Comparative study of gold extraction from refractory pyritic ores through conventional leaching and simultaneous pressure leaching/oxidation[J].Mining Engineering,72(8):45-46.
Sun Zhongmei, Sun Chunbao, Gan Yonggang,2014.Study on flotation technology on carlin types gold ore in Guizhou[J].Comprehensive Utilization of Minerals,(5):34-37.
Wei Longming,1996.General characters of gold mineral in carlin-type gold deposit,China [J].Gold Geology,2(3):15-17.
Wu Tianjiao, Cao Huan, Niu Fangyin,et al,2021.Study on gold extraction from a carbon-bearing fine-grained refractory gold ore by flotation process[J].Gold Science and Technology,29(5):761-770.
Xu Tao, Su Shuyun, Liao Zhanpi,et al,2013.Study on modes of occurrence of gold for Shuiyindong gold bearing pyrite in Guizhou Province[J].Gold Science and Technology,21(5):86-92.
Xu Xiaoyang,2020.Research on extracting gold from refractory gold ore by POX-cyanidation technique [J].Gold,41(4):50-53.
Yang Bo, Tong Xiong, Xie Xian,et al,2020.Study on the gold recovery from flotation tailings of a refractory gold ores in Gansu Province by a process combining mineral processing and metallurgy[J].Gold Science and Technology,28(2):285-292.
班金彭,畅利民,代云鹏,等,2019.黔西南水银洞金矿涌水坑道钻探难点与对策[J].探矿工程(岩土钻掘工程),46(11):14-20.
曹亦俊,闫小康,王利军,等,2017.微细粒浮选的微观湍流强化[J].矿产保护与利用,(2):113-118.
常征,熊馨,孙晓华,2021.青海某含砷含碳微细浸染型难处理金矿石选矿试验研究[J].黄金,42(1):55-58,63.
陈晓东,2021.精锐微泡浮选机强化微细粒浮选的机理与实践[J].有色金属(选矿部分),(1):112-116.
陈忠信,1997.浮选机[J].国外选矿快报,(13):11-18.
崔立凤,田树国,何美丽,2018.贵州水银洞含炭细粒浸染型难选冶金矿石选矿试验研究[J].矿产综合利用,(4):37-41.
崔毅琦,陈海亮,董鹏,等,2014.卡林型金矿预处理技术研究现状[J].黄金,35(10):61-63.
李国,皮桥辉,韦朝文,等,2019.贵州水银洞金矿金的赋存状态[J].桂林理工大学学报,39(4):817-829.
刘科勇,2016.我国金矿开发存在的问题及建议[J].现代国企研究,(24):202-203.
刘源,侯中健,李定武,2013.我国卡林型金矿研究现状[J].四川地质学报,33(2):132-136.
满露梅,2021.复杂卡林型金矿选冶联合工艺的研究与探索[J].中国有色冶金,50(3):63-69.
齐剑,潘成龙,田惠敏,2021.我国黄金行业发展趋势及政策建议[J].中国市场,(15):1-8.
孙忠梅,孙春宝,甘永刚,2014.贵州某卡林型金矿浮选工艺研究[J].矿产综合利用,(5):34-37.
韦龙明,1996.中国卡林型金矿床金矿物的一般特征[J].黄金地质,2(3):15-17.
吴天骄,曹欢,牛芳银,等,2021.某含碳微细粒难处理金矿浮选提金工艺研究[J].黄金科学技术,29(5):761-770.
许涛,苏妤芸,廖占丕,等,2013.贵州水银洞含金黄铁矿中金的赋存形式探讨[J].黄金科学技术,21(5):86-92.
许晓阳,2020.难处理金矿石加压氧化——氰化提金技术研究[J].黄金,41(4):50-53.
杨波,童雄,谢贤,等,2020.选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J].黄金科学技术,28(2):285-292.
[1] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[2] 黄爽, 贾明涛, 鲁芳. 基于启发式遗传算法的地下采场作业计划优化模型[J]. 黄金科学技术, 2023, 31(4): 669-679.
[3] 樊忠平, 张望, 王卫. 陕西省山阳—商南金矿成矿规律及找矿预测研究[J]. 黄金科学技术, 2023, 31(4): 560-579.
[4] 宁钧陶, 黄宝亮, 董国军, 周岳强, 高卓龙, 康博. 湘东北热液型钴矿床中含钴矿物特征及其对成矿的指示意义[J]. 黄金科学技术, 2023, 31(4): 531-545.
[5] 潘彤,陈建洲,丁成旺,马玉亮,梁辉,张涛,杜小春. 柴达木巴伦马海盆地锂稀有轻金属黏土型矿赋存特征[J]. 黄金科学技术, 2023, 31(3): 359-377.
[6] 张顺,生显军,赵红浩. 玲珑金矿田108#脉支脉控矿模式研究及探矿成果[J]. 黄金科学技术, 2023, 31(3): 453-463.
[7] 司建涛,白德胜,肖尊群,李水平,祁东,孙进. 坦桑尼亚盖塔绿岩带成矿地质特征和成矿时代[J]. 黄金科学技术, 2023, 31(3): 387-395.
[8] 王大福,刘建中,王泽鹏,陈发恩,杨成富,徐良易,李俊海,刘婧珂,潘启权,龙成雄,汪小勇. 贵州贞丰县卡务地区金矿地质特征与找矿预测[J]. 黄金科学技术, 2023, 31(3): 433-442.
[9] 刘智刚,张爱奎,刘永乐,张勇,何书跃,孙非非. 东昆仑西段阿其音金矿绢云母Ar-Ar测年及其地质意义[J]. 黄金科学技术, 2023, 31(3): 378-386.
[10] 崔文玮,晁会霞,何虎军,杨兴科,杨俊杰,朱昊磊,吴旭. 海南富文金矿床矿石、围岩及地层元素地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(3): 423-432.
[11] 郭焕钊,康明,朱文德,王棚伟,段杰凯. 地电化学勘查法在山西五台地区代银掌金多金属矿的试验研究[J]. 黄金科学技术, 2023, 31(3): 443-452.
[12] 曾超聪,张广盛,吴为荣,黄万抚,李新冬,王泽凯,刘观发. 电沉积法从硫氰酸盐浸金液回收金的试验研究[J]. 黄金科学技术, 2023, 31(2): 349-358.
[13] 吴华浩,邵拥军,刘清泉,王智琳,张毓策,袁梓焜. 湘东北正冲金矿床成因:年代学和硫同位素制约[J]. 黄金科学技术, 2023, 31(2): 190-205.
[14] 徐厚生,张德贤. 熊耳山地区东草沟金银矿床构造控矿特征与成矿规律研究[J]. 黄金科学技术, 2023, 31(2): 206-218.
[15] 刘林林,陈军,杨再风,杜丽娟,吉彦冰,郑禄林. 滇黔桂地区不同成矿温度热液金矿床磷灰石矿物化学特征:兼论卡林型金成矿流体来源特殊性[J]. 黄金科学技术, 2023, 31(2): 219-231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[2] 耿阿乔, 段建华. 青海满丈岗金矿控矿因素及找矿靶区分析[J]. J4, 2010, 18(6): 34 -37 .
[3] 刘建中,夏勇,张兴春,邓一明,苏文超,陶琰. 层控卡林型金矿床矿床模型———贵州水银洞超大型金矿[J]. J4, 2008, 16(3): 1 -5 .
[4] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[5] 张渊, 张洪喜. 山东黄埠岭金矿7号脉地质特征及控矿机理研究[J]. J4, 2010, 18(4): 12 -16 .
[6] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[7] 周殿宇, 宋丙剑, 怀宝峰. 吉林汪清杜荒岭金矿地质特征及找矿标志探讨[J]. J4, 2007, 15(3): 11 -14 .
[8] 张凤霞, 程佑法, 张志刚, 燕菲. 二次资源贵金属回收及检测方法进展[J]. J4, 2010, 18(4): 75 -79 .
[9] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[10] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .