img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (1): 91-99.doi: 10.11872/j.issn.1005-2518.2024.01.112

• 采选技术与矿山管理 • 上一篇    下一篇

截齿截割角度对截割性能的影响研究

刘大兵1(),何银东2   

  1. 1.山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261400
    2.紫金(长沙)工程技术有限公司,湖南 长沙 410208
  • 收稿日期:2023-08-09 修回日期:2023-10-20 出版日期:2024-02-29 发布日期:2024-03-22
  • 作者简介:刘大兵(1986-),男,山东高密人,高级工程师,从事金属矿开采技术及井巷工程等方面的研究工作。liudabing218@163.com

Study on the Effect of Cutting Angle of Cutting Teeth on Cutting Performance

Dabing LIU1(),Yindong HE2   

  1. 1.Sanshandao Gold Mine, Shandong Gold Mining(Laizhou) Co. , Ltd. , Laizhou 261400, Shandong, China
    2.Zijin(Changsha)Engineering Technology Co. , Ltd. , Changsha 410208, Hunan, China
  • Received:2023-08-09 Revised:2023-10-20 Online:2024-02-29 Published:2024-03-22

摘要:

以悬臂式掘进机为主的机械开挖是实现金属矿山连续化开采、推动智能矿山建设的重要手段,截齿截割角度是影响截齿受力情况的重要参数,从而影响掘进机掘进效率。为了优化截齿参数,采用Rhino软件和PFC3D软件建立了截齿截割岩石模型,在对试验数据进行验证的基础上,开展了不同截割角度(45°、50°、55°、60°和65°)下截齿截割花岗岩数值模拟试验研究。结果表明:基于PFC3D软件的截齿模拟试验具有可靠的精度,模拟试验与室内试验结果之间的相对误差分别为13.59%和16.92%。同时,不同截割角度下截齿的受力情况不同,在55°时截齿截割角度能够得到较好的改善。

关键词: 镐形截齿, PFC3D软件, 截割角度, 截割性能, 截割力, 悬臂式掘进机

Abstract:

The application of cantilever type roadheader in coal mines has shown great advantages,and gradually promoted in metal mines.However,the cutting teeth are subjected to huge loads and strong impacts in the process of cutting the rock body,which leads to serious wear and tear of the cutting teeth,thus restricting the further popularization and application of the cantilever type roadheader.In order to optimize the cutting angle and improve the force on the teeth,Rhino software and PFC3D software were used to establish a rock model of the cutting angle of the teeth,which was simulated and verified by the existing test data,and on the basis of which the linear cutting simulation of the teeth was carried out on the granite by considering the cutting angles of different modifications,such as 45°,50°,55°,60°,65°.The results show that the cutting simulation test based on PFC3D software has reliable accuracy,and the relative errors between the simulation test and the indoor test results are 13.59% and 16.92%,respectively.The force on the teeth is different under different cutting angles,and the cutting angle of the teeth can be improved at 55°.It provides a reference for the design of cutter teeth structure of cantilever type roadheader.

Key words: conical pick, PFC3D software, cutting angle, cutting performance, cutting force, cantilever roadheader

中图分类号: 

  • TD85

图1

截齿三向受力情况示意图"

图2

S-35/80型镐形截齿截割头剖面图"

图3

截齿截割岩石模型示意图"

图4

截齿模型及网格划分"

图5

截齿截割岩石模型"

图6

接触黏结模型(a)和平行黏结模型(b)"

表1

试验砂岩模拟细观参数"

参数数值参数数值
模型直径/mm54E*=Eˉ*41.2
模型高度/mm108k*=kˉ*2.6
ρ/(kg·m-32 650σˉc/MPa93
Rmax/Rmin1.66cˉ/MPa65.5
μ0.7?ˉ /(°)15

表2

砂岩标定结果"

参数试验数据模拟数据相对误差/%
单轴抗压强度/MPa114114.190.3
弹性模量/GPa17.017.553.2

图7

模拟验证试验结果"

表3

截齿截割过程中力值统计结果"

贯入度/mm平均截割力/N平均牵引力/N
33 996.763 151.77
67 745.995 800.93
912 697.078 348.88
1215 433.3411 404.69

表4

验证试验结果比较及精度计算"

参数模拟试验结果室内试验结果相对误差/%
Fn/d1 329.111 136.816.92
Fc/d956.881 107.413.59

表5

试验花岗岩模拟细观参数"

参数数值参数数值
模型直径/mm50E*=Eˉ*21.06
模型高度/mm100k*=kˉ*1.5
ρ/(kg·m-32 650σˉc/MPa226.51
Rmax/Rmin1.66cˉ/MPa83.89
μ0.7?ˉ /(°)5

图8

试验和模拟应力—应变曲线对比"

表6

标定结果及误差"

参数试验数据模拟数据相对误差/%
单轴抗压强度/MPa194.93195.810.45
弹性模量/GPa36.5237.532.80

表7

不同条件下截齿截割模拟结果"

截割角度/(°)平均截割力Fn/kN平均牵引力Fc/kN
4527.3325.57
5025.1523.09
5525.8822.56
6026.8424.19
6528.1926.88

图9

截割角度为55°条件下截割力演化过程"

图10

截割角度为55°条件下截割过程示意图"

图11

截齿截割力和牵引力随截割角度的变化"

Bao R H, Zhang L C, Yao Q Y,et al,2011.Estimating the peak indentation force of the edge chipping of rocks using single point-attack pick[J].Rock Mechanics and Rock Engineering,44(3):339-347.
Bilgin N, Demircin M A, Copur H,et al,2006.Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results[J].International Journal of Rock Mechanics and Mining Sciences,43(1):139-156.
Deisman N, Mas Ivars D, Pierce M,2008.PFC2D smooth joint contact model numerical experiments[C]//Proceedings of GeoEdmonton’08.Edmonton,Canada:GeoEdmonton’08 Organizing Committee: 83-87.
He Xingchuan,2023.Simulation Study on the Automatic Cutting Control of Boom-type Roadheader[D].Huainan:Anhui University of Science and Technology.
He Yang, Jiang Jiayang,2023.Structural design and stress analysis of carbide cutting tips for mining machinery[J].Cemented Carbides,40(2):117-125.
Huang Chen, Li Jiangteng, Zhao Yuan,et al,2022.Optimization of blasting parameters for Dongguashan copper minebased on PFC2D [J].Mining and Metallurgical Engineering,42(1):1-4.
Ji Chaoyue, Kaibo Lü, Yuan Hongbing,et al,2018.Dynamic analysis on coal cutting of roadheader considering wear of picks[J].Mining Research and Development,38(4):100-103.
Ji Yujie, Cao Xuetao,2013.Study on pick cutting coal and rock by DEM simulation method[J].Mining Research and Development,33(2):84-87,117.
Jia Jia, Wang Yiliang, Yang Zhaojian,et al,2017.Force analysis of conical pick in coal cutting at different cutting depths[J].Coal Engineering,49(9):122-125,129.
Labra C, Rojek J, Onate E,2017.Discrete/finite element modelling of rock cutting with a TBM disc cutter[J].Rock Mechanics and Rock Engineering,50:621-638.
Li Qiang, Mao Jun, Zhang Mingyu,2017.Experimental study of cutting resistance of cutting teeth under different condition of shearer[J].Journal of Nanjing University of Science and Technology,41(2):159-164.
Li Yongbo, Long Wei, Wang Lichang,et al,2022.Construction of high temperature and high pressure deep drilling model based on PEC3D[J].Equipment for Geotechnical Engineering,23(5):17-23.
Liao S M, Peng F L, Shen S L,2008.Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction[J].Tunnelling and Underground Space Technology,23(4):421-430.
Liu Bin, Li Xuefeng,2023.Experimental study on the influence of cutting distance on the rock-breaking features of pick-shaped cutter[J].Journal of Mine Automation,49(8):155-164.
Liu Songyong, Du Changlong, Cui Xinxia,2009.Experimental research on picks arrangement of shearer drum[J].Journal of Central South University(Science and Technology),40(5):1281-1287.
Liu Weihuang,2015.Simulation of Cutting Coal Rock with a Cutting Head[D].Taiyuan:Taiyuan University of Technology.
Shi Chong, Xu Weiya,2015.Numerical Simulation Techniques and Practices for Particulate Flow[M].Beijing:China Architecture and Building Press.
Tian Tingyu, He Bing, Wang Shujing,et al,2018.Microscomic numerical study for mechanism of seguential fraamentation by concial picks and correspondino cutter spacing optimization[J].Mining and Metallurgical Engineering,38(3):30-24.
Tian Zhigang,2020.Application of cantilever roadheader in Fankou lead-zinc mine[J].Mining Technology,20(1):129-130.
Wang Dongyi, Li Xibing, Li Chongjin,et al,2020.Mechanism of surface subsidence caused by underground mining[J].Mining and Metallurgical Engineering,40(1):16-21.
Wang Yubo,2021.Research on Coupled Continuum-Discrete Analysis Method and Damage Characteristics of Rock Pillar in Deeply Buried Small Spacing Roadway[D].Hefei:Hefei University of Technology.
Wu Aixiang, Wang Yong, Zhang Minzhe,et al,2021.New development and prospect of key technology in underground mining of metal mines[J].Metal Mine,50(1):1-13.
Wu Peng, Wan Lirong, Lu Zhenguo,2021.Study on mechanical properties and damage of the broken coal rock with cutting pick[J].Mining Research and Development,41(6):143-148.
Yang S Q, Huang Y H, Jing H W,et al,2014.Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J].Engineering Geology,178:28-48.
Zhang Liyuan,2019.Analysis of Thermal-mechanical Characteristics of Coal Rock Cutting Picks[D].Fuxin:Liaoning Technical University.
Zhang Ning, Yang Li, Shi Ming,et al,2014.Study on wear-resistant strengthen of plasma arc surfacing for tunneling machine pick[J].Hot Working Technology,43(3):167-169,173.
Zhang Xin, Gao Qingli, Li Xu,et al,2021.Effects of rock fracture on rock breaking by pick of roadheader[J].Mining Research and Development,41(3):126-130.
Zhao Fujun, Li Xibing, Feng Tao,et al,2004.A new multifunctional testing device for rock fragmentation[J].Journal of Central South University(Science and Technology),35(4):651-656.
Zhou Yu, Wu Shunchuan, Jiao Jianjin,et al,2011.Research on mesomechanical parameters of rock and soil mass based on BP neural network[J].Rock and Soil Mechanics,32(12):3821-3826.
何兴川,2023.悬臂式掘进机自动截割控制仿真研究[D].淮南:安徽理工大学.
何炀,江佳阳,2023.采掘机械用截齿合金结构设计及应力分析[J].硬质合金,40(2):117-125.
黄尘,李江腾,赵远,等,2022.基于PFC2D的冬瓜山铜矿爆破参数优化[J].矿冶工程,42(1):1-4.
籍超越,吕凯波,袁红兵,等,2018.考虑磨损的掘进机截齿割煤动力学分析[J].矿业研究与开发,38(4):100-103.
纪玉杰,曹学涛,2013.截齿截割煤岩的离散元法仿真方法研究[J].矿业研究与开发,33(2):84-87,117.
贾嘉,王义亮,杨兆建,等,2017.镐型截齿不同切削厚度下破煤受力分析[J].煤炭工程,49(9):122-125,129.
李强,毛君,张明玉,2017.不同工况下采煤机截齿截割阻力实验研究[J].南京理工大学学报,41(2):159-164.
李永波,隆威,王李昌,等,2022.基于PFC3D的深地高温高压钻进模型的构建[J].地质装备,23(5):17-23.
刘滨,李雪峰,2023.截割间距对镐型截齿破岩特性影响的试验研究[J].工矿自动化,49(8):155-164.
刘送永,杜长龙,崔新霞,2009.采煤机滚筒截齿排列的试验研究[J].中南大学学报(自然科学版),40(5):1281-1287.
刘炜煌,2015.截割头截割煤岩的模拟[D].太原:太原理工大学.
石崇,徐卫亚,2015.颗粒流数值模拟技巧与实践[M].北京:中国建筑工业出版社.
田听雨,何冰,王树景,等,2018.截齿顺次破岩机制的细观数值模拟及截线间距优化研究[J].矿冶工程,38(3):30-34.
田志刚,2020.悬臂式掘进机在凡口铅锌矿的应用[J].采矿技术,20(1):129-130.
王栋毅,李夕兵,黎崇金,等,2020.地下采矿引起地表塌陷机理研究[J].矿冶工程,40(1):16-21.
王昱博,2021.深埋小间距巷道连续—离散耦合分析方法与岩柱破损特性研究[D].合肥:合肥工业大学.
吴爱祥,王勇,张敏哲,等,2021.金属矿山地下开采关键技术新进展与展望[J].金属矿山,50(1):1-13.
吴鹏,万丽荣,逯振国,2021.截齿破碎煤岩力学特性及损伤研究[J].矿业研究与开发,41(6):143-148.
张李原,2019.煤岩截割截齿热—力特性分析[D].阜新:辽宁工程技术大学.
张宁,杨莉,石明,等,2014.掘进机镐形截齿等离子弧堆焊耐磨强化的研究[J].热加工工艺,43(3):167-169,173.
张鑫,高庆利,李旭,等,2021.岩石裂隙对掘进机截齿截割破岩的影响[J].矿业研究与开发,41(3):126-130.
赵伏军,李夕兵,冯涛,等,2004.新型多功能岩石破碎试验装置[J].中南大学学报(自然科学版),35(4):651-656.
周喻,吴顺川,焦建津,等,2011.基于BP神经网络的岩土体细观力学参数研究[J].岩土力学,32(12):3821-3826.
[1] 盛宇航, 裴佃飞, 齐兆军, 荆晓东. 尾砂粒级组成对胶结充填料流变特性与强度的影响[J]. 黄金科学技术, 2024, 32(4): 631-639.
[2] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[3] 胡松涛, 朱庚杰, 张军童, 徐世群, 寇云鹏. 胶东地区黄金矿山细尾砂胶结充填应用研究[J]. 黄金科学技术, 2024, 32(3): 425-436.
[4] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[5] 邱泓杰, 邱贤阳, 张舒, 陈辉, 史秀志, 沈文博, 陶铁军, 段武全. 深井高应力环境下束状组合孔拉槽爆破优化研究[J]. 黄金科学技术, 2024, 32(2): 318-329.
[6] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[7] 吕向东, 李醒. 高深溜井矿石阶段性流动规律对溜井生产的影响[J]. 黄金科学技术, 2024, 32(1): 179-190.
[8] 海龙, 鲍荣涛, 谭世林, 房祥龙. 分层尾砂胶结充填体力学特性及优化试验研究[J]. 黄金科学技术, 2023, 31(5): 763-772.
[9] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[10] 黄爽, 贾明涛, 鲁芳. 基于启发式遗传算法的地下采场作业计划优化模型[J]. 黄金科学技术, 2023, 31(4): 669-679.
[11] 张卫中,袁威,康钦容,夏缘帝,李梦玲. 基于综合权重—模糊物元法的岩溶地区隧道围岩质量评价[J]. 黄金科学技术, 2023, 31(3): 487-496.
[12] 刘志祥,晏孟洋,张双侠,熊帅,王凯. 考虑岩石微缺陷影响的损伤本构模型[J]. 黄金科学技术, 2023, 31(3): 507-515.
[13] 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112.
[14] 谭宝会,王永定,张志贵,龙卫国,李斌,何建元,龚臻. 复杂开采条件下低品位镍矿安全高效回采方案研究[J]. 黄金科学技术, 2023, 31(1): 88-101.
[15] 杨晴,杨仕教,张冉玥. 基于上澄清液浊度的超细尾砂絮凝沉降试验[J]. 黄金科学技术, 2022, 30(6): 948-957.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!