img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (1): 88-101.doi: 10.11872/j.issn.1005-2518.2023.01.146

• 采选技术与矿山管理 • 上一篇    下一篇

复杂开采条件下低品位镍矿安全高效回采方案研究

谭宝会1(),王永定2,张志贵1,龙卫国2,李斌1,何建元2,龚臻2   

  1. 1.西南科技大学环境与资源学院,四川 绵阳 621010
    2.金川集团有限公司龙首矿,甘肃 金昌 737100
  • 收稿日期:2022-10-16 修回日期:2022-11-22 出版日期:2023-02-28 发布日期:2023-03-27
  • 作者简介:谭宝会(1988-),男,陕西宝鸡人,讲师,博士,从事地下采矿工程教学与科研工作。tanbaohui@swust.edu.cn
  • 基金资助:
    国家自然科学基金项目“考虑围岩效应的岩石抗剪强度参数联合分布研究”(51904248);镍钴资源综合利用国家重点实验室开放课题“破碎岩体条件下多种支护形式耦合协同作用机理研究”(GZSYS-KY-2021-022);西南科技大学博士基金项目“崩落—充填复合采场地压交互作用机理及调控方法”(21zx7157)

Study on Safety and Efficient Mining Scheme for Low Grade Nickel Ore Under Complex Mining Conditions

Baohui TAN1(),Yongding WANG2,Zhigui ZHANG1,Weiguo LONG2,Bin LI1,Jianyuan HE2,Zhen GONG2   

  1. 1.School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
    2.Longshou Mine, Jinchuan Group Co. , Ltd. , Jinchang 737100, Gansu, China
  • Received:2022-10-16 Revised:2022-11-22 Online:2023-02-28 Published:2023-03-27

摘要:

在龙首矿西二采区上部中段采矿方法由胶结充填法转为无底柱分段崩落法时,矿山面临着覆盖层形成及矿石损失贫化控制等一系列技术难题。首先提出了大体积胶结充填体诱导冒落覆盖层形成方案,分析得出胶结充填体具有较好的可冒性;然后对胶结充填体破碎后的块度分布规律进行了研究,结果表明胶结充填体在破碎过程中不会产生大量粉状物,因此不会造成矿石提前贫化;最后针对崩落法采场仅有的4个回采分段提出一种组合式放矿方案,并对该方案在矿石贫损控制方面的有效性进行了试验验证。将各项研究成果应用于现场生产实践,成功诱导顶板胶结充填体冒落形成覆盖层,在获得良好矿石贫损指标的基础上,使采场产能提升30%,采矿成本降低28%,在复杂开采条件下实现了低品位矿石的安全高效、低贫损及低成本开采。

关键词: 低品位镍矿, 有限回采空间, 无底柱分段崩落法, 覆盖层形成, 冒落块度, 贫损控制

Abstract:

In the upper middle section of West No.2 mining area of Longshou mine,it is necessary to adopt the non-pilar sublevel caving method within the range of ore body with a height of less than 70 m to achieve safe,efficient and low loss mining of low grade ore resources,the ore mining conditions are very complex.In view of these key technical problems,the research was carried out one by one.Firstly,a technical scheme for the formation of overburden by inducing caving of large volume cemented backfill was proposed.At the same time,the mechanical properties,structural characteristics and caving ability of cemented backfill were studied,the results show that backfill has good collapsibility.Secondly,the fragmentation degree of cemented backfill was studied by means of field investigation and physical experiment.The results show that although the strength of cemented backfill is small,it will not produce a large amount of powder after the initial caving and secondary crushing during ore drawing,and the average block size of cemented backfill is greater than the average block size of the ore falling from the fan-shaped blasthole.Therefore,the caving cemented backfill will not lead to the premature dilution of the ore.Subsequently,a combined ore drawing scheme was proposed for the only four stoping sections in the caving stope,and the effectiveness of the scheme was studied by physical ore drawing experiments.The experimental results show that the ore recovery rate of the scheme can reach 85.4%,while the dilution rate is only 6.5%.Finally,the above research results were applied to the field production practice,and the roof cementation backfill was successfully induced to fall naturally to form a covering layer with a thickness of about 30 m.While ensuring the ore recovery rate in the stope,the dilution rate is controlled within 10%,so that the stope productivity is increased by 30%,the mining cost is reduced by 28%,and the safe,efficient,low loss,and low-cost mining of low-grade ore in the West No.2 mining area was realized under complex mining conditions.

Key words: low grade nickel ore, restricted mining space, non-pilar sublevel caving mining method, overburden formation, caved block size, dilution and loss control

中图分类号: 

  • TD853

图1

西二采区采场分布示意图"

图2

大体积胶结充填体诱导冒落形成覆盖层方案示意图1-回采进路;2-中深孔炮排;3-下盘沿脉巷道;4-矿石散体垫层;5-切割立槽;6-上盘切割平巷;7-溜井;8-冒落胶结充填体;9-阶梯式退采方向;10-片麻岩;11-胶结充填体;12-矿体"

表1

西二采区胶结充填体关键物理力学参数"

参数名称数值参数名称数值
密度/(kg·m-32 200抗剪强度/MPa2
抗压强度/MPa4.8内摩擦角/(°)36
抗拉强度/MPa0.5弹性模量/GPa7.2

图3

下向水平分层胶结充填体的结构特征"

图4

胶结充填体分层横梁受力示意图h-分层厚度;L-拉底空间跨度;R-岩梁端部竖向集中应力;σh-岩梁端部水平集中应力;σv-岩梁所受的垂直应力;Q-岩梁所受剪切力;M-岩梁所受弯矩"

图5

冒落胶结充填体块度调查地点、现场情况及图像矢量化处理结果(a)调查点位置;(b)5行穿脉分层道;(c)6行穿脉分层道;(d)7行穿脉分层道;(e)冒落块实拍图;(f)矢量图"

表2

胶结充填体初始冒落块度组成"

块体

尺寸/m

块度

分级

各测点块度分布情况/%

平均值

/%

5行调查点6行调查点7行调查点
>0.6大块53201429
0.3~0.6中块19353630
0.1~0.3次中块11362223
<0.1小块16102818

图6

冒落胶结充填体破碎试验流程"

图7

冒落胶结充填体二次破碎模拟试验过程"

表3

冒落胶结充填体二次破碎试验结果"

块度分级块体尺寸/cm占比/%次级块度平均值/%初始冒落块度平均值/%差值/%
第1次试验第2次试验
大块>0.619.617.218.429.0-10.6
中块0.6~0.328.231.930.130.0-0.1
次中块0.3~0.125.926.226.023.0+3.0
小块<0.126.324.725.518.0+7.5

表4

扇形中深孔崩落的矿石块度组成"

块度

分级

尺寸/m扇形炮孔崩落矿石块度组成比例/%崩落矿石块度平均值/%充填体初始冒落块度/%充填体次级块度/%
锦宁矿业大顶山矿区镜铁山矿桦树沟矿区傲牛矿业毛公铁矿
大块>0.6006.32.129.018.4
中块0.6~0.312.6015.39.330.030.1
次中块0.3~0.142.345.135.641.023.026.0
小块<0.145.154.942.847.618.025.5

图8

放矿模型设计图及实物照"

表5

3组试验方案放矿控制方式"

分段编号试验方案1试验方案2试验方案3(本研究方案)
分段1总量控制出矿(40%)总量控制出矿(40%)总量控制出矿(40%)
分段2总量控制出矿(80%)总量控制出矿(80%)总量控制出矿(80%)
分段3截止品位方式出矿低贫化方式出矿低贫化方式出矿
分段4截止品位方式出矿截止品位方式出矿低贫化方式出矿

表6

3组试验方案矿石回收指标"

方案序号矿石回收率/%废石混入率/%
试验方案187.615.5
试验方案286.510.8
试验方案385.46.5

图9

首采分段放出的冒落胶结充填体及微地震监测冒落结果"

图10

扇形炮孔布置形式及爆破块度效果"

表7

各采矿分段矿石回收指标"

分段编号分段矿石回收率/%分段废石混入率/%
1 595 m284.5
1 580 m(9线以东)85.88.6
1 580 m(9线以西)37.75.2
1 565 m1038.5
Cao Jianli, Ren Fengyu,2013.Research of dispersions bedding’s safety thickness in processing deposits with induced caving[J].Metal Mine,42(3):45-48.
Dong Feng, Zheng Chengying, Min Zhongpeng,2018.Experimental research on safe and efficient extraction of moderately inclined low-grade ore body under complex mining conditions[J].Gold,39(12):27-31.
Gao Pengju, Zhou Li,2019.Optimized selection and application of mining method in South Huangshan copper-nickel mine[J].Gold,40(6):35-39.
Hu Haibo,2015.Optimization of mining method for gently inclined,thick,large and difficult-to-mine orebody with low grade[J].Mining Research and Development,35(8):9-11.
Huang Xingyi,2011.Research on overburden layer thickness of no-pillar sublevel caving in Jianshan iron mine[J].Nonferrous Metals Design,38(3):6-10.
Jiang Lichun, Chen Peng, Wu Aixiang,2019.Roof self-stabilizing arching effect of goaf based on different roof-contacted filling rate[J].The Chinese Journal of Nonferrous Metals,29(1):187-193.
Li Haigang, Liu Jingde, Wan Chuanchuan,2018.High-efficient mining technology of eastern lean difficult-excavated tungsten ore body[J].Nonferrous Metals(Mining Section),70(2):1-4,14.
Li Nan, Ren Fengyu, Zhao Yunfeng,et al,2010.Study on the formation of overburden layer during the transition from open pit to underground mining in Xiaowanggou iron mine[J].Metal Mine,39(12):9-11.
Lin Lü,2011.The Application of Photography-Image Processing in the Analysis of Rock Fragmentation[D].Wuhan:Wuhan University of Technology.
Luo Jia, Liu Xiaosheng, Zhou Aimin,2016.Study on selection of roof caving method for high sublevel caving stope[J].Mining Research and Development,36(10):6-10.
Qi Zhiping, Zhang Xiaoyan,2022.On the risk management of China’s enterprise futures market from the Lunni incident[J].Tsinghua Financial Review,(5):52-56.
Ren Fengyu, Han Zhiyong, Zhao Enping,et al,2007.Induced caving technique and it’s application in Beiminghe iron mine[J].Mining Research and Development,27(1):17-19.
Ren Fengyu, Kang Peisheng,1998.Ore/rock size effects on the ore drawing control in sublevel caving[J].China Mining Magazine,7(6):25-27.
Sun Guoquan, Fu Zhanyu, Sun Jiangxian,et al,2011.Pillar recovery and covering layer formation technique during transferring from open stope into caving method[J].Metal Mine,40(1):5-7,11.
Sun Mingzhi,2014.The High Efficient Mining Technology of Heishan Iron Deposit During the Period of Open-pit Transferring to Under Ground Mining[D].Shenyang:Northeastern University.
Sun Wenyong, Chen Xingming, Tan Baohui,et al,2013.Reasons and countermeasures of ore loss and depletion in complex orebody conditions [J].Journal of Liaoning Technical University(Natural Science),32(10):1339-1343.
Wang Zhenmin, Li Zhenlong, Li Shuai,et al,2021.Application of mechanized upward slicing and filling method in mining low grade,gently inclined and multilayer parallel gold veins[J].China Mining Magazine,30(11):87-93.
Xue Xiaomeng, Mo Dongxu, Luo Jia,2020.Application of large-diameter and deep-hole caving process in the mining of low-grade and thick deposits[J].Mining Research and Development,40(4):8-11.
Yang Limei,2011.Induced caving technique and its application in roof breaking for non-pillar sublevel caving[J].Gansu Metallurgy,33(4):33-34,57.
Zhang Guolian, Qiu Jingping, Song Shouzhi,2004.Study on relationship between recovery index and sublevel number in pillarless sublevel caving[J].Metal Mine,33(4):14-16,19.
Zhang Zhigui, Liu Xingguo, Yu Guoli,2007.Non-dilution Draw for Sublevel Caving:Non-dilution Draw Method and Its Application in Mines[M].Shenyang: Northeastern University Press.
曹建立,任凤玉,2013.诱导冒落法处理时采空区散体垫层的安全厚度[J].金属矿山,42(3):45-48.
董峰,郑成英,闵忠鹏,2018.复杂开采条件缓倾斜低品位矿体安全高效回采试验研究[J].黄金,39(12):27-31.
高鹏举,周礼,2019.黄山南铜镍矿采矿方法优化选择及应用[J].黄金,40(6):35-39.
胡海波,2015.低品位厚大缓倾斜难采矿体采矿方法优化研究[J].矿业研究与开发,35(8):9-11.
黄兴益,2011.尖山铁矿无底柱分段崩落法覆盖层厚度的研究[J].有色金属设计,38(3):6-10.
姜立春,陈鹏,吴爱祥,2019.基于不同充填接顶率的采空区顶板拱架自稳效应[J].中国有色金属学报,29(1):187-193.
李海港,刘经德,万串串,2018.某低品位难采钨矿高效开采技术研究[J].有色金属(矿山部分),70(2):1-4,14.
李楠,任凤玉,赵云峰,等,2010.小汪沟铁矿露天转地下覆盖层形成方法研究[J].金属矿山,39(12):9-11.
罗佳,柳小胜,周爱民,2016.高分段无底柱崩落法放顶方法选择研究[J].矿业研究与开发,36(10): 6-10.
吕林,2011.图像处理技术在岩体块度分析中的应用[D].武汉:武汉理工大学.
齐稚平,张晓燕,2022.从伦镍事件看我国企业期货市场风险管理[J].清华金融评论,(5):52-56.
任凤玉,韩智勇,赵恩平,等,2007.诱导冒落技术及其在北洺河铁矿的应用[J].矿业研究与开发,27(1):17-19.
任凤玉,康培生,1998.无底柱分段崩落法出矿控制点与矿岩块度关系的实验研究[J].中国矿业,7(6):25-27.
孙国权,付占宇,孙江先,等,2011.空场法转崩落法开采时的矿柱回采及覆盖层形成技术[J].金属矿山,40(1): 5-7,11.
孙明志,2014.黑山铁矿露天转地下高效开采技术研究[D].沈阳:东北大学.
孙文勇,陈星明,谭宝会,等,2013.复杂矿体条件矿石损失贫化原因及对策[J].辽宁工程技术大学学报(自然科学版),32(10):1339-1343.
王振闽,李振龙,李帅,等,2021.机械化上向水平分层充填法在低品位缓倾斜多层金矿脉开采中的应用[J].中国矿业,30(11):87-93.
薛小蒙,莫东旭,罗佳,等,2020.大直径深孔落矿工艺在低品位厚大矿床开采中的应用[J].矿业研究与开发,40(4):8-11.
杨丽梅,2011.诱导冒落技术在无底柱分段崩落法放顶中的应用[J].甘肃冶金,33(4):33-34,57.
张国联,邱景平,宋守志,2004.无底柱分段崩落法回收指标与分段数关系研究[J].金属矿山,33(4):14-16,19.
张志贵,刘兴国,于国立,2007.无底柱分段崩落法无贫化放矿:无贫化放矿理论及其在矿山的实践[M].沈阳: 东北大学出版社.
[1] 苏华友,王永定,谭宝会,龙卫国,杨宁,张志贵,陈星明. 大面积胶结充填体诱导冒落机理及其发展过程研究[J]. 黄金科学技术, 2022, 30(5): 713-723.
[2] 张淦,陶干强,吴宇轩. 基于改流体放矿技术的放矿口尺寸试验研究[J]. 黄金科学技术, 2021, 29(3): 364-371.
[3] 任助理,王李管. 基于金属价格不确定性的地下矿生产计划风险分析[J]. 黄金科学技术, 2017, 25(6): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!