img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (5): 704-712.doi: 10.11872/j.issn.1005-2518.2022.05.148

• 采选技术与矿山管理 • 上一篇    下一篇

基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用

徐先锋(),邢鹏飞(),王岁红,汪泳   

  1. 核工业井巷建设集团有限公司,浙江 湖州 303002
  • 收稿日期:2021-10-12 修回日期:2022-06-08 出版日期:2022-10-31 发布日期:2022-12-10
  • 通讯作者: 邢鹏飞 E-mail:1274153062@qq.com;363328532@qq.com
  • 作者简介:徐先锋(1970-),男,浙江湖州人,高级工程师,从事井巷工程方面的研究工作。1274153062@qq.com

Rock Mass Quality Evaluation and Application Based on Game Theory and G1-EW-TOPSIS Method

Xianfeng XU(),Pengfei XING(),Suihong WANG,Yong WANG   

  1. Nuclear Industry Jingxiang Construction Group Co. ,Ltd. ,Huzhou 303002,Zhejiang,China
  • Received:2021-10-12 Revised:2022-06-08 Online:2022-10-31 Published:2022-12-10
  • Contact: Pengfei XING E-mail:1274153062@qq.com;363328532@qq.com

摘要:

岩体质量的合理评价对矿山的安全生产和经济效益具有重要意义。针对岩体质量评价条件复杂、具有模糊性的特点,选取5个代表性参数作为评价指标,提出了一种基于博弈论G1-EW-TOPSIS法的岩体质量评价模型,并将该模型应用于内蒙古某银多金属矿。为验证该模型的有效性,首先对该矿山首采中段进行现场调查,确定5个测点,然后基于博弈论的思想,将G1法计算的主观权重 ω1 和EW法计算的客观权重 ω2 优化组合,得到最终的综合权重 ω,最后利用TOPSIS法计算各测点的相对贴近度来判断岩体质量等级。结果表明:该矿山首采中段岩体质量评价等级主要为Ⅲ级和Ⅳ级,岩体质量较差,需要加强支护。计算结果与工程现场5个测点完全吻合,验证了模型的有效性,为岩体质量评价提供了新思路。

关键词: 岩体质量评价, 组合赋权, TOPSIS, 博弈论, G1法, 熵权法

Abstract:

The reasonable evaluation of rock quality is the basis for engineering design and construction,and it is of great significance to the safe production and economic benefits of mines.In view of the complex conditions and ambiguity of rock quality evaluation,on the basis of comprehensive reference to relevant research literature,five parameters were selected as rock quality evaluation indexes,including core quality index RQD value(X1),uniaxial compressive strength of rock σcX2),rock integrity coefficient KvX3),structural surface strength coefficient J(X4)and unit time water seepage SX5),and a rock quality evaluation model of G1-EW-TOPSIS method based on game theory idea was proposed and applied to the rock quality evaluation of the first mining middle section of a silver polymetallic mine in Inner Mongolia.To verify the validity of the model,firstly,a field survey was conducted to determine five measurement points for the structural surface condition and groundwater flow of the rock mass in the first mining middle section of the mine,and then the subjective weight ω1 and objective weight ω2 of the indexes of the measurement points were obtained by combining the G1 method and EW method through game theory to obtain the comprehensive weight ω.Finally,TOPSIS was used to calculate the relative closeness of each measurement point under each rock quality class to determine the rock quality class of the measurement point.The results show that the five rock quality grade evaluation indexes selected in this paper can better reflect the state of the rock mass.The method of calculating the com-prehensive weight of the model not only overcomes the shortcomings of the single assignment method,but also reduces the error and improves the ability of the model to deal with multi-objective decision problems.The rock quality in the first middle section of this mine is mainly evaluated as grade Ⅲ and grade Ⅳ,the rock quality is poor,and the support needs to be strengthened for the roadway and the exposed surrounding rock of the quarry where the rock quality is grade Ⅳ.The calculation results of the model completely match with the rock quality of 5 measurement points at the mine engineering site,which provides a new idea for rock quality evaluation.

Key words: rock mass quality evaluation, combination weighting, TOPSIS, game theory, G1 method, entropy weight method

中图分类号: 

  • TD853.3

图1

岩体质量评价模型计算流程图evaluation model"

表1

rl 赋值说明"

rl赋值说明
1.0评价指标Xl 与评价指标Xl-1重要程度一样
1.2评价指标Xl-1的重要程度与评价指标Xl 相比稍微重要
1.4评价指标Xl-1与评价指标Xl 的重要程度介于稍微重要和非常重要之间
1.6评价指标Xl-1的重要程度与评价指标Xl 相比非常重要
1.8评价指标Xl-1的重要程度与评价指标Xl 相比极度重要

表2

岩体质量分级标准"

岩石质量等级X1/%X2/MPaX3X4X5/[L·min-1·(10 m)-1
Ⅰ(稳定)90~100120~2000.75~1.000.8~1.00~5
Ⅱ(较稳定)75~9060~1200.45~0.750.6~0.85~10
Ⅲ(基本稳定)50~7530~600.30~0.450.4~0.610~25
Ⅳ(不稳定)25~5015~300.20~0.300.2~0.425~125
Ⅴ(极不稳定)0~250~150~0.200~0.2125~300

图2

围岩情况现场调查"

表3

测点数据"

测点编号指标值
X1X2X3X4X5
1105.01620.465.86.1
292.84550.414.25.4
392.84600.444.76.7
4105.01680.475.38.5
576.80830.486.27.9

表4

评价指标排序和rk 赋值"

专家编号指标排序r2r3r4r5
1X2>X3>X4>X1>X51.61.51.41.3
2X2>X4>X1>X3>X51.71.01.21.1
3X2>X3>X5>X4>X11.71.21.31.0
4X3>X2>X4>X5>X11.61.41.21.1

表5

G1法权重计算结果"

指标专家排序结果ω1
专家1专家2专家3专家4
X10.2430.1430.1730.2250.196
X20.3890.3210.3530.3590.356
X30.0890.1580.1330.1220.126
X40.1160.1890.2080.1600.168
X50.1620.1890.1330.1340.155

表6

熵权法和综合权重计算结果"

指标ω2ω
X10.1600.178
X20.2670.313
X30.1620.144
X40.1990.183
X50.2120.183

表7

岩体质量评价结果"

测点相对贴进度本文方法G1法EW法工程实测
10.50.4650.5160.4970.5
20.50.4780.5100.5920.5
30.50.4760.4970.4320.5
40.50.5020.5050.4680.5
50.50.5120.4910.4800.5
Bridges D S,2004.First steps in constructive game theory[J].Mathematical Logic Quarterly,(50):501-506.
Cao Chen, Li Huizhong, Chen Jianping,et al,2017.Dam foundation rock mass quality evaluation based on combination weighting method and cloud model [J].Journal of Northeastern University(Natural Science),(38):1643-1647.
Changjiang River Scientific Research Institute of Changjiang Water Resources Commission,1995. Standard for engineering classification of rock masses: [S].Beijing:China Planning Press.
Chen C S, Liu Y C,2006.A methodology for evaluation and classification of rock mass quality on tunnel engineering[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,22(4):377-387.
Chen Zhiqiang, Wang Yiming, Chen Shunman,2019.Stability analysis of goaf based on entropy weight method and fuzzy Theory[J].Mining Research and Development,39(5):39-43.
Ding Zhenjie, Zheng Jun, Qing Lü,et al,2019.Discussion on calculation methods of quality index of slope engineering rock mass in Standard for Engineering Classification of Rock Mass[J].Rock and Soil Mechanics,40(Supp.1):275-280.
Gong Fengqiang, Li Xibing,2007.Application of distance discriminant analysis method in classification of rock mass quality [J].Chinese Journal of Rock Mechanics and Engineering,(1):194-198.
He Yunsong, Xue Qiuchi, Zhao Qihua,2017.Improved support vector machine-based study on rock mass quality classification[J].Water Resources and Hydropower Engineering,48(1):133-138.
Hu Jianhua, Ai Zihua,2017.Extension evaluation model of underground mine rock mass quality based on optimal combination weighting [J].Gold Science and Technology,25(4):39-45.
Hu Jianhua, Guo Mengmeng, Zhou Tan,et al,2021.Rock mass quality evaluation model based on improved transfer learning algorithm[J].Gold Science and Technology,29(6):826-833.
Kang Zhiqiang, Feng Xiating, Zhou Hui,2006.Application of extensics theory to evaluation of underground cavern rock quality based on stratification analysis method [J].Chinese Journal of Rock Mechanics and Engineering,(Supp.2):3687-3693.
Liu Feiyue, Liu Yihan, Yang Tianhong,2021.Fine evaluation of mine rock mass quality based on core image deep learning[J].Chinese Journal of Geotechnical Engineering,43(5):968-974.
Liu Qiang, Li Xibing, Liang Weizhang,2018.PCA-RF model for rock mass quality classification and its application[J].Gold Science and Technology,26(1):49-55.
Lu Fangyuan,2003.An improved TOPSIS method [J].Statistics & Decision,(3):78-79.
Qi Wei, Li Wei, Li Zhenyang,et al,2020.Rock mass quality evaluation of underground mine based on CRITIC-CW me-thod[J].Gold Science and Technology,28(2):264-270.
Qiu Daohong, Chen Jianping, Que Jinsheng,et al,2008.Rock mass quality evaluation of cavern based on rough set and artificial neural network [J].Journal of Jilin University(Earth Science Edition),38(1):86-91.
Tang Hai, Wan Wen, Liu Jinhai,2011.Evaluation of rock mass quality in underground caverns based on unascertained measure theory [J].Rock and Soil Mechanics,32(4):1181-1185.
Tang Xiaoling, Lin Min, Liu Leilei,2021.Mining scheme optimization model based on game theory combination weighting TOPSIS method and its application[J].Mining Research and Development,41(5):5-10.
Tu W F, Li L P, Li S C,et al,2019.Research on the application of dynamic weighting on the rock mass quality rating[J].Arabian Journal of Geosciences,12:1-9.
Wang Xuejun, Guo Yajun, Lan Tian,2006.Rank correlation analysis of formation of consistent judgment matrix[J].Journal of Northeastern University,(1):115-118.
Warren S N, Kallu R R, Barnard C K,2016.Correlation of the rock mass rating(RMR) system with the unified soil classification system(USCS):Introduction of the weak rock mass rating system(W-RMR)[J].Rock Mechanics and Rock Engineering,49(11):4507-4518.
Wu X M,2009.A weighted generalized maximum entropy estimator with a data-driven weight[J].Entropy,(11):917-930.
Zhao Guoyan, Liu Leilei, Wang Jianbo,et al,2019.PCA-OPF model for rockburst grade prediction [J].Mining and Metallurgical Engineering,39(4):1-5.
Zhao Guoyan, Qiu Ju, Zhao Yuan,et al,2020.Study on the evaluation index system and combination weighting method of green mining of metal mine[J].Journal of Safety and Environment,20(6):2309-2316.
Zhao Guoyan, Zhu Xubo, Su Long,2012.Research on extension evaluation of rock mass quality for underground mine based on game theory[J].Mining Research and Development, 32(1):12-16.
Zhou Tan, Hu Jianhua, Kuang Ye,2019.Rock mass quality evaluation method and application based on fuzzy RES-multidimensional cloud model[J].The Chinese Journal of Nonferrous Metals,29(8):1771-1780.
曹琛,李会中,陈剑平,等,2017.基于组合赋权法与云模型坝基岩体质量评价[J].东北大学学报(自然科学版),(38):1643-1647.
长江水利委员会长江科学院,1995. 工程岩体分级标准: [S].北京:中国计划出版社.
陈志强,王贻明,陈顺满,2019.基于熵权法和模糊理论的采空区稳定性分析[J].矿业研究与开发,39(5):39-43.
丁振杰,郑俊,吕庆,等,2019.《工程岩体分级标准》中边坡工程岩体质量指标计算方法的讨论[J].岩土力学,40(增1):275-280.
宫凤强,李夕兵,2007.距离判别分析法在岩体质量等级分类中的应用[J].岩石力学与工程学报,(1):194-198.
何云松,薛秋池,赵其华,2017.基于改进向量机的岩体质量分级研究[J].水利水电技术,48(1):133-138.
胡建华,艾自华,2017.基于最优组合赋权的地下矿山岩体质量可拓评价模型[J].黄金科学技术,25(4):39-45.
胡建华,郭萌萌,周坦,等,2021.基于改进迁移学习算法的岩体质量评价模型[J].黄金科学技术,29(6):826-833.
康志强,冯夏庭,周辉,2006.基于层次分析法的可拓学理论在地下洞室岩体质量评价中的应用[J].岩石力学与工程学报,(增2):3687-3693.
刘飞跃,刘一汉,杨天鸿,2021.基于岩芯图像深度学习的矿山岩体质量精细化评价[J].岩土工程学报,43(5):968-974.
刘强,李夕兵,梁伟章,2018.岩体质量分类的PCA-RF模型及应用[J].黄金科学技术,26(1):49-55.
卢方元,2003.一种改进的TOPSIS法[J].统计与决策,(3):78-79.
戚伟,李威,李振阳,等,2020.基于CRITIC-CW法的地下矿岩体质量评价[J].黄金科学技术,28(2):264-270.
邱道宏,陈剑平,阙金声,等,2008.基于粗糙集和人工神经网络的洞室岩体质量评价[J].吉林大学学报(地球科学版),38(1):86-91.
唐海,万文,刘金海,2011.基于未确知测度理论的地下洞室岩体质量评价[J].岩土力学,32(4):1181-1185.
唐晓灵,林敏,刘雷磊,2021.基于博弈论组合赋权-TOPSIS法的采矿方案优选模型及应用[J].矿业研究与开发,41(5):5-10.
王学军,郭亚军,兰天,2006.构造一致性判断矩阵的序关系分析法[J].东北大学学报,(1):115-118.
赵国彦,刘雷磊,王剑波,等,2019.岩爆等级预测的PCA-OPF模型[J].矿冶工程,39(4):1-5.
赵国彦,邱菊,赵源,等,2020.金属矿绿色开采评价指标体系及组合赋权法研究[J].安全与环境学报,20(6):2309-2316.
赵国彦,朱旭波,苏龙,2012.基于博弈论的地下矿山岩体质量可拓评价研究[J].矿业研究与开发,32(1):12-16.
周坦,胡建华,匡也,2019.基于模糊RES-多维云模型的岩体质量评判方法与应用[J].中国有色金属学报,29(8):1771-1780.
[1] 温廷新,苏焕博. 基于MICE_RF的组合赋权—极限随机树岩爆预测模型[J]. 黄金科学技术, 2022, 30(3): 392-403.
[2] 邓龙鑫, 陈建宏. 基于博弈论的主客观组合权重TOPSIS采矿方法优选[J]. 黄金科学技术, 2022, 30(2): 282-290.
[3] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[4] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[5] 唐宇,王少锋. 单向受限应力下镐型截齿破岩特性及其影响因素分析[J]. 黄金科学技术, 2021, 29(5): 669-679.
[6] 景岳,王少锋,鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534.
[7] 石勇,史秀志,丁文智. 基于改进熵权法—未确知测度模型的黄金洞尾矿库综合安全评价[J]. 黄金科学技术, 2021, 29(1): 155-163.
[8] 柯愈贤,王成,方立发,廖宝泉. 基于组合权重和物元分析的矿山安全生产状况研究[J]. 黄金科学技术, 2020, 28(6): 910-919.
[9] 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760.
[10] 李彤彤, 王玺, 刘焕新, 侯奎奎, 李夕兵. 基于组合赋权的T-FME岩爆倾向性预测模型研究及应用[J]. 黄金科学技术, 2020, 28(4): 565-574.
[11] 周科平, 侯霄峰, 林允. 基于综合决策云模型的围岩稳定性分级方法研究[J]. 黄金科学技术, 2020, 28(3): 372-379.
[12] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[13] 刘亦晴,梁雁茹,刘娜娜,胡欢. 基于高质量发展视角的绿色矿山建设评价指标体系研究[J]. 黄金科学技术, 2020, 28(2): 176-187.
[14] 赵国彦,邱菊,赵源,裴佃飞,李洋,吴攀. 金属矿绿色开采评价方法探讨[J]. 黄金科学技术, 2020, 28(2): 169-175.
[15] 张钦礼,赵宇飞,荣帅,康虔. 基于变权重理论和TOPSIS的缓倾斜薄矿脉采矿方法优选[J]. 黄金科学技术, 2019, 27(6): 844-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[2] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[3] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[4] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[5] 耿阿乔, 段建华. 青海满丈岗金矿控矿因素及找矿靶区分析[J]. J4, 2010, 18(6): 34 -37 .
[6] 杨晓鸿. 贡果亚陇地区金锑矿成矿前景及其找矿意义[J]. J4, 2010, 18(6): 38 -41 .
[7] 喻光明, 白万成, 郭俊华. 基于矿床定位预测系统DPIS平台的成矿预测应用——以阳山金矿富集区为例[J]. J4, 2010, 18(4): 33 -36 .
[8] 张华全,张维昕,李洪杰. 山东胶莱盆地金矿成矿条件及找矿方向[J]. J4, 2008, 16(2): 12 -17 .
[9] 臧恩光,衣存昌,张春晓. 黑龙江桦南砾岩金矿地质特征及找矿标志[J]. J4, 2008, 16(2): 29 -32 .
[10] 江秉忠, 宋丙剑. 黑龙江嘎拉山地区金找矿潜力分析[J]. J4, 2011, 19(1): 34 -37 .