img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 659-668.doi: 10.11872/j.issn.1005-2518.2023.04.113

• 采选技术与矿山管理 • 上一篇    下一篇

深井规模化开采矿山与分布式微震监测系统设计研究

张君1,2(),杨清平3,刘芳芳1,2,张金钟3,徐刚强2,李晓松3   

  1. 1.长沙施玛特迈科技有限公司,湖南 长沙 410083
    2.长沙迪迈数码科技股份有限公司,湖南 长沙 410012
    3.中色非洲矿业有限责任公司,北京 100089
  • 收稿日期:2022-08-29 修回日期:2023-07-11 出版日期:2023-08-30 发布日期:2023-09-20
  • 作者简介:张君(1987-),男,湖北黄梅人,高级工程师,从事矿山安全开采、地压监测、矿山信息化和智能化等相关装备和技术研究工作。295912247@qq.com
  • 基金资助:
    湖南省基金项目2020年度安全生产预防及应急专项资金项目“地下矿山感知网络与数字化建设研究”(2020YJ001)

Design and Research of Distributed Microseismic Monitoring System in Deep Well Large-scale Mining Mine

Jun ZHANG1,2(),Qingping YANG3,Fangfang LIU1,2,Jinzhong ZHANG3,Gangqiang XU2,Xiaosong LI3   

  1. 1.Changsha Smart Mining Inc Ltd. , Changsha 410083, Hunan, China
    2.Changsha Digital Mine Inc Ltd. , Changsha 410012, Hunan, China
    3.NFC Africa Mining PLC, Beijing 100089, China
  • Received:2022-08-29 Revised:2023-07-11 Online:2023-08-30 Published:2023-09-20

摘要:

深井规模化开采已成为国内外地下矿山开采的重要发展趋势,然而这种开采工艺会面临复杂的地压灾害活动威胁。基于谦比希铜矿微震监测系统研究课题,开展了分布式微震监测系统设计方案研究。通过对谦比希铜矿通信网络特点和通信技术进行研究,提出了新型PTP时间同步协议并配置授时硬件装置,在此基础上解决了分布式系统时间同步问题,并测试验证了微震系统时间同步精度在65~82 ns之间;基于空间过滤体方式对微震信号进行边界约束,解决了微震监测区域数据分析分散的问题;通过三维数值模拟方法验证了分布式微震监测的定位精度,同时通过现场踏勘方式验证了上述方法现场应用的可靠性。研究结果表明:分布式微震监测系统可以很好地适应深井规模化开采矿山的地压灾害监测需求。

关键词: 深井, 规模化开采, 分布式微震监测系统, 时间同步, 空间过滤, 台网分析

Abstract:

Deep well large-scale mining is one of the important development trends of mining methods at home and abroad,but this mining method also faces the threat of complex ground pressure disasters.Based on the requirements for the design of microseismic monitoring system in Chambishi copper mine,a typical deep well large-scale distributed mining mine,the distributed microseismic monitoring system design scheme was studied in this paper.Deep well large-scale mining will inevitably lead to the dispersion of underground monitoring equipment.Because the microseismic data acquisition substations at different locations are running underground,due to the continuous accumulation of network delays,there will be large time synchronization errors,and the time synchronization errors will cause the microseismic events originally occurring in the south mining area to be located in the north mining area or in unrelated areas,so that the true location of ground pressure disasters cannot be accurately monitored.In addition,the microseismic monitoring software will carry out statistical analysis of all the monitored events when carrying out quantitative statistical analysis,and the ground pressure disaster activity characteristics in different regions have nonlinear characteristics,so it is necessary to carry out statistical analysis of data separately.In view of the difficulties in the design of distributed microseismic monitoring system,two key technologies have been researched and developed based on the existing microseismic monitoring system technologies.One is the high-precision time synchronization technology to solve the time synchronization problem of ultra long-distance distributed equipment,and the other is the monitoring data spatial filtering technology to solve the data analysis of ground pressure disaster activities in different regions.Based on the application of the above key technologies,the design concept of the distributed microseismic monitoring system was realized.At the same time,the network numerical calculation tool was used to simulate the system positioning accuracy of the distributed microseismic monitoring design scheme.The key data required by the microseismic monitoring network analysis tool are three-dimensional coordinate information of the sensor position,sensitivity value of the sensor,seismic wave velocity,P-wave variance and arrival error variance.Based on the above data,the positioning error was calculated numerically,and finally the three-dimensional cloud map of the positioning error in the central area and the surrounding area of the monitoring station network was obtained.The network analysis results show that the design scheme meets the monitoring needs of actual ground pressure activities,thus verifying the feasibility of the design scheme.The solution can be applied to the same type of mines and has certain promotion value.

Key words: deep well, large-scale mining, distributed microseismic monitoring system, time synchronization, spatial filtering, seismological network analysis

中图分类号: 

  • TD76

图1

谦比希铜矿东南矿体开拓系统分布图"

图2

谦比希铜矿东南矿体南北采区整体划分三维视图"

图3

谦比希铜矿东南矿体工业环网设计图"

图4

PTP协议延迟响应机制"

图5

微震监测系统时间同步精度测试系统架构"

图6

试验周期内时间精度统计分析"

图7

基于空间过滤技术分布式监测数据分析效果图"

图8

微震监测系统架构拓扑图"

图9

微震监测台网三维布置图"

表1

微震监测台网内传感器编号及对应的三维坐标"

传感器编号三维坐标
XYZ
S680-1-9 727.3314 842.22559.519
S680-2-9 758.0614 781.42559.912
S680-3-9 785.6814 726.42559.914
S680-4-9 617.5614 643.69564.607
S680-5-9 583.7814 703.26564.757
S680-6-9 549.9114 761.80564.891
S680-7-9 432.1214 571.32566.266
S800-1-9 746.0714 849.76441.590
S800-2-9 641.7514 807.39441.400
S800-3-9 594.0414 903.38442.134
S800-4-9 477.7314 696.10447.358
S800-5-9 416.7714 801.79447.780
S960-1-10 372.8015 944.26265.244
S960-2-10 430.8015 835.29265.633
S960-3-10 347.4015 788.95273.118
S960-4-10 289.6015 892.07273.941
S960-5-10 257.6015 739.78280.628
S960-6-10 200.0015 842.49274.856
S1080-1-10 393.0015 706.99156.465
S1080-2-10 250.8015 756.23156.834
S1080-3-10 177.9015 889.44157.658
S1080-4-10 338.2016 003.69157.900
S1080-5-10 411.0015 871.76156.854
S680-8-9 382.3814 660.23564.872
S800-6-9 298.8614 606.08449.012
S680-1-9 727.3314 842.22559.519
S680-2-9 758.0614 781.42559.912
S680-3-9 785.6814 726.42559.914
S680-4-9 617.5614 643.69564.607
S680-5-9 583.7814 703.26564.757
S680-6-9 549.9114 761.80564.891
S680-7-9 432.1214 571.32566.266

图10

微震监测台网分析结果(误差小于10 m的包络区域)"

图11

微震监测数据视应力云图"

图12

YL-28#钻孔应力计监测数据变化曲线"

Cai Meifeng, Xue Dinglong, Ren Fenhua,2019.Current status and development strategy of metal mines[J].Chinese Journal of Engineering,41(4):417-426.
Chen R,2020.On-line detection method of power quality detection device based on high-precision standard time synchronization technology[J].International Journal of Circuits,Systems and Signal Processing, 14:708-715.
Cui Yu, Li Xibing, Dong Longjun,et al,2019.Optimization of micro-seismic monitoring network layout in Linglong gold mine[J].Gold Science and Technology,27(3):417-424.
Dang Jiandong, Zhang Jun,2019.Application of microseismic monitoring technology in Dongguashan copper mine[J].Modern Mining,35(9):240-242.
Dang Mingzhi, Zhang Jun, Jia Mingtao,2020.Application and research of microseismic monitoring technology and disaster early warning methods in Huangtupo copper and zinc mine[J].Gold Science and Technology,28(2):246-254.
Gao Yongtao, Wu Qingliang, Wu Shunchuan,et al,2013.Optimization of microseismic monitoring network based on the theory of D-optimal design[J].Chinese Journal of Engineering,35(12):1538-1545.
Gu Desheng, Li Xibing,2003.Science problem and research state of deep mining in metal and nonferrous mines[J].Mining Research and Development,23(2):1-5.
Guo Xiaoqiang, Fengcheng Haungfu, Wang Guo,et al,2019.Construction and application of microseismic monitoring system in Ashele copper mine[J].Mining and Metallurgical Engineering,39(6):29-34.
He Manchao,2007.Conception system and evaluation indexes for deep engineering[J].Chinese Journal of Rock Mechanics and Engineering,24(16):2854-2858.
Li Shulin, Yin Xiangang, Zheng Wenda,et al,2005.Research of multichannel microseismic monitoring system and its application to Fankou lead zinc mine[J].Chinese Journal of Rock Mechanics and Engineering,24(12):2048-2053.
Li Xibing, Zhou Jian, Wang Shaofeng,et al,2017.Review and exploration of deep solid resource mining[J].Chinese Journal of Nonferrous Metals,27 (6):1236-1262.
Liu C, Li X, Zhang C,et al,2021a.The spatio-temporal evolution law of overlying rock fractures in an experimental working face(N00 mining method) based on microseismic monitoring technology[J].Arabian Journal of Geosciences,14(14):1-16.
Liu Huanxin, Wang Jianbo, Zhao Jie,et al,2018.Critical technical problems of deep mining and preliminary solutions[J].Mining Research and Development,38(5):1-5.
Liu J P, Si Y T, Wei D,et al,2021b.Developments and prospects of microseismic monitoring technology in underground metal mines in China[J].Journal of Central South University,28(10):3074-3098.
Liu Lishun, Yang Xiaocong, Wan Chuanchuan,et al,2022.Research progress on mechanical problems in deep mining of metal mines[J].Nonferrous Metals(Mining Section),74(4):14-18,25.
Liu S J, Hamdulla A,2020.The issues on time synchronization technology in time triggered ethernet[J].Journal of Physics:Conference Series,1673(1):012015.
Liu Xiaoming, Zhao Jiaxuan, Wang Liguan,et al,2016.Evaluation on layout of mine microseismic monitoring network based on comprehensive evaluation method[J].Journal of Safety Science and Technology,12(5):66-72.
Ning Yanhong,2021.Discussion on deep shaft mining technology of a gold mine in South Africa[J].China Mine Engineering,50(4):21-24.
Qian Qihu,2004.The characteristics scientific phenomena of engineering response to deep rock mass and the implication of deepness[J].Journal of East China Institute of Technology,27(1):1-5.
Tang Lizhong, Yang Chengxiang, Pan Changliang,2006.Optimization of microseismic monitoring system network for large-scale deep well mining[J].Chinese Journal of Rock Mechanics and Engineering,25(10):2036-2042.
Wang Niu,2014.On the necessity of large-scale mining[J].Henan Science and Technology,(2):161.
Wu Qingming, Cao Min, Yan Peng,2020.Impact analysis of surface movement caused by deep well mining in Erdaogou mine[J].Gold,41(6):40-43.
Xie Heping,2017.Research framework and anticipated results of deep rock mechanics and mining theory[J].Advanced Engineering Sciences,49(2):1-16.
Yang Chengxiang,2008.Investigation on the Technologies of High Efficiency Mining and Ground Pressure Monitoring and Control for Deep Metal Deposit Mining[D].Changsha:Central South University.
Zhao J S, Jiang Q, Lu J F,et al,2022.Rock fracturing observation based on microseismic monitoring and borehole imaging:In situ investigation in a large underground cavern under high geostress[J].Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 126:104549.
蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426.
崔宇,李夕兵,董陇军,等,2019.玲珑金矿微震监测台网布设优化[J].黄金科学技术,27(3):417-424.
党建东,张君,2019.微震监测技术在冬瓜山铜矿的应用[J].现代矿业,35(9):240-242.
党明智,张君,贾明涛,2020.黄土坡铜锌矿微震监测技术应用与灾害预警方法研究[J].黄金科学技术,28(2):246-254.
高永涛,吴庆良,吴顺川,等,2013.基于D值理论的微震监测台网优化布设[J].北京科技大学学报,35(12):1538-1545.
郭晓强,皇甫风成,王果,等,2019.阿舍勒铜矿微震监测系统建设与应用研究[J].矿冶工程,39(6):29-34.
古德生,李夕兵,2003.有色金属深井采矿研究现状与科学前沿[J].矿业研究与开发,23(2):1-5.
何满潮,2007.深部的概念体系及工程评价指标[J].岩石力学与工程学报,24(16):2854-2858.
李庶林,尹贤刚,郑文达,等,2005.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,24(12):2048-2053.
李夕兵,周健,王少锋,等,2017.深部固体资源开采评述与探索[J].中国有色金属学报,27(6):1236-1262.
刘焕新,王剑波,赵杰,等,2018.深井开采关键技术难题与解决途径初探[J].矿业研究与开发,38(5):1-5.
刘立顺,杨小聪,万串串,等,2022.金属矿山深井开采中的力学问题研究进展[J].有色金属(矿山部分),74(4):14-18,25.
刘晓明,赵嘉轩,王李管,等,2016.基于综合评价法的矿山微震监测台网布设评价[J].中国安全生产科学技术,12(5):66-72.
宁彦红,2021.南非某金矿深井开采技术探讨[J].中国矿山工程,50(4):21-24.
钱七虎,2004.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报(自然科学版),27(1):1-5.
唐礼忠,杨承祥,潘长良,2006.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,25(10):2036-2042.
王牛,2014.论矿山开采规模化的必要性[J].河南科技,(2):161.
吴清明,曹敏,严鹏,2020.二道沟矿深井开采地表移动影响分析[J].黄金,41(6):40-43.
谢和平,2017.“深部岩体力学与开采理论”研究构想与预期成果展望[J].工程科学与技术,49(2):1-16.
杨承祥,2008.深井金属矿床高效开采及地压监控技术研究[D].长沙:中南大学.
[1] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[2] 王贺,陈何,曹辉. 我国大变形锚杆研究现状及发展趋势[J]. 黄金科学技术, 2020, 28(1): 112-123.
[3] 张睿冲,谢承煜,周科平. 高温深井通风降温技术的适用条件研究[J]. 黄金科学技术, 2019, 27(6): 888-895.
[4] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
[5] 李光,马凤山,刘港,郭捷,郭慧高,寇永渊. 金川矿区深部巷道支护效果评价及参数优化研究[J]. 黄金科学技术, 2018, 26(5): 605-614.
[6] 李夕兵,刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502.
[7] 李光,马凤山,郭捷,卢蓉,陈仲杰,寇永渊. U钢管混凝土支架支护技术在金川矿山的应用[J]. 黄金科学技术, 2017, 25(5): 57-66.
[8] 过江,刘铭,张碧肖. 深井充填两相流管道沉积机理研究[J]. 黄金科学技术, 2016, 24(5): 86-93.
[9] 黄寿元,蔡建华,李刚. 沃溪坑口千米深井降温技术研究与实践[J]. 黄金科学技术, 2016, 24(3): 81-86.
[10] 赵龙,吴昌晓,孙铭骏,王楠. 三山岛金矿深井充填系统影响因素分析及优化[J]. 黄金科学技术, 2014, 22(6): 46-49.
[11] 高光. 盲竖井井位选择的可行性研究[J]. J4, 2006, 14(5): 34-37.
[12] 高光. 深井开采中的地压现象致因分析及措施[J]. J4, 2006, 14(4): 32-35.
[13] 樊满华. 深井开采通风技术[J]. J4, 2001, 9(6): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林海平. 河台金矿剪切带构造演化及其与金成矿关系[J]. J4, 2010, 18(6): 30 -33 .
[2] 尹承忠, 罗卫. 河台金矿床的成因特征[J]. J4, 2007, 15(3): 41 -46 .
[3] 刘井军,张连昌. 热水金矿控矿因素及找矿方向[J]. J4, 2004, 12(5): 15 -20 .
[4] 谢覃江. 云南省人头箐金矿床地质特征及成因探讨[J]. 黄金科学技术, 0, (): 0 .
[5] 李洪杰, 马树江. 招平成矿带山后—围石山地区构造叠加晕及找矿方向[J]. J4, 2009, 17(6): 47 -51 .
[6] 吴姗姗, 赵莎, 牛树银, 王宝德, 孙爱群, 李富, 杨宝军. 河北崇礼县中山沟金矿深部成矿分析[J]. J4, 2009, 17(1): 6 -9 .
[7] 艾满乾. 砂金选矿取样及回收率计算[J]. J4, 2001, 9(2): 42 -47 .
[8] 刘建中, 夏勇, 邓一明, 苏文超, 张兴春, 邱林, 陈明, 陈发恩, 付芝康. 贵州水银洞Sbt研究及区域找矿意义探讨[J]. J4, 2009, 17(3): 1 -5 .
[9] 黄仲权. 滇东南推覆造山带金成矿作用与找矿前景[J]. J4, 1995, 3(6): 25 -30 .
[10] 柳玉明, 柳楠, 张杰, 宋玉波, 宫隆吉, 王刚, 刘晓, 张海芳. 山东英格庄金矿床构造特征研究及找矿方向[J]. J4, 2010, 18(6): 26 -29 .