img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2016, Vol. 24 ›› Issue (5): 86-93.doi: 10.11872/j.issn.1005-2518.2016.05.086

• 采选技术与矿山管理 • 上一篇    下一篇

深井充填两相流管道沉积机理研究

过江,刘铭,张碧肖   

  1. 中南大学资源与安全工程学院,湖南  长沙   410083
  • 收稿日期:2016-06-27 修回日期:2016-09-01 出版日期:2016-10-28 发布日期:2016-12-27
  • 作者简介:过江(1973-),男,江西弋阳人,副教授,从事采矿与充填技术研究工作。guojiang@csu.edu.cn
  • 基金资助:

    新疆维吾尔自治区自然科学基金项目“多碱干旱地区矿山膏体充填流变特性与固化性能研究”(编号:201233146-2)资助

Study on the Deposition Mechanism of Two-phase Flow Pipeline in Deep Filling System

GUO Jiang,LIU Ming,ZHANG Bixiao   

  1. School of Resources and Safety Engineering,Central South University,Changsha    410083,Hunan,China
  • Received:2016-06-27 Revised:2016-09-01 Online:2016-10-28 Published:2016-12-27

摘要:

为解决某深井矿山因管道沉积造成的安全生产问题,通过对深井充填管道沉积机理进行研究,基于固液两相流相关理论,分别从细颗粒结垢和粗颗粒沉积2个方面来阐释两相流管道沉积机理。运用FLUENT流体动力学软件进行建模和分析,将浆体中固体细颗粒与清水混合的均质悬液作为连续相,较粗颗粒作为离散相,根据浆体中粗颗粒的浓度分布和管道速度分布特点来确定管道内颗粒物沉积规律。结果发现,充填两相流管道沉积的主要原因是细颗粒结垢和粗颗粒沉积相结合。数值模拟的两相流充填管道沉积过程与理论分析提出的粗细颗粒沉积物理模型相吻合。

关键词: 深井充填, 沉积机理, 固液两相流, 离散相模型

Abstract:

In order to solve the problems of safety production due to the deposition of pipeline in a deep mine,through the study on the deposition mechanism of deep level pipelines system,and based on solid-liquid two-phase flow theory,the deposition mechanism of two-phase flow pipeline is interpreted from the aspects of fine particulate fouling and coarse particle deposition.The FLUENT fluid dynamics software was used to model and analyze,the fine particles in slurry and the water mixed homogeneous suspension are seem as continuous phase,coarse particles are seem as discrete phase,and then according to the concentration distribution of the coarse particles in the slurry and the characteristics of the pipe velocity distribution,the characteristics of the particle deposition in the pipeline are determined.The results show that the scaling of the fine particles and the deposition of  the coarse particles are the main reasons of  two-phase filling flow pipe sediment.The numerical simulation of the two-phase flow filling process is consistent with the theoretical analysis.

Key words: deep well filling, deposition mechanism, solid-liquid two-phase flow, discrete phase model

中图分类号: 

  • TD853

[1] 王博,李长俊,杜强,等.天然气管道直管段结垢速率数值模拟研究[J].中国安全生产科学技术,2016,12(2):97-100.
[2] 张宇,吴海浩,宫敬.海底混输管道蜡沉积研究与发展[J].石油矿场机械,2009,38(9):1-8.
[3] 张钦礼,姜志良,王石,等.高浓度超细全尾砂充填料浆管道输送阻力模型[J].科技导报,2014,32(24):51-55.
[4] 王新民,丁德强,吴亚斌,等.膏体充填管道输送数值模拟与分析[J].中国矿业,2006,15(7):58-59.
[5] 黄玉诚,董羽,许保国,等.似膏体管道输送弯管段浆体流       动数值模拟研究[J].煤炭工程,2014,46(3):84-86.
[6] 杨波,杨仕教,王富林.基于ANSYS/FLOTRAN的高浓度全尾砂胶结充填管道输送数值模拟研究[J].黄金科学技术,2015,23(5):60-65.
[7] 何哲祥,田守祥,隋利军,等.矿山尾矿排放现状与处置的有效途径[J].采矿技术,2008,8(3):78-80,83.
[8] 傅旭东,王光谦,董曾南.低浓度固液两相流理论分析与管流数值计算[J].中国科学(E辑),2001,31(6):556-565.
[9] Turian R M,Hsu F L,Ma T W.Estimation of the critical velocity in pipeline flow of slurries[J].Powder Technology,1987,51(1):35-47.
[10]  马云庆,王瑞星,何顺斌,等.无底柱后退式竖向分条分段充填采矿法研究[J].黄金科学技术,2014,22(4):67-71.
[11] 过江,张碧肖.固—液两相流充填管道输送冲蚀磨损数值研究[J].科技导报,2015,33(11):49-53.
[12]  Usui H,Li L,Suzuki H.Rheology and pipelinetransportation of densefly-ash-water slurry[J].Korea-Australia Rheology Journal,2001,13(1):47-54.
[13] 邓义斌,王飞显,范世东.冰水两相流对海水管道冲蚀磨损特性数值模拟[J].航海工程,2015,44(1):150-154.
[14]  李亮,申龙涉,范开峰,等.弯管中多相流冲蚀腐蚀数值模拟[J].辽宁石油化工大学学报,2014,34(3):48-51.
[15]  张义,周文,孙志强.管道内气固两相流冲刷磨损特性数值模拟[J].金属材料与冶金工程,2011,39(1):11-15.
[16] 吴迪,蔡嗣经,杨威.基于CFD的充填管道固液两相流输送模拟及试验[J].中国有色金属学报,2012,22(7):2133-2140.
[17]  梁颖,袁宗明,陈学敏,等.基于 CFD 的液固两相流冲刷腐蚀预测研究[J].石油化工应用,2014,33(2):103-106.
[18]  杨建胜,罗坤,王则力.煤粉颗粒对管道壁面磨损的数值模拟研究[J].能源工程,2010(4):1-4.

[1] 史采星, 郭利杰, 李文臣, 张丹. 铅锌冶炼渣充填胶凝材料研究及应用[J]. 黄金科学技术, 2018, 26(2): 160-169.
[2] 刘定一, 王李管, 陈鑫, 钟德云, 徐志强. 地下矿中长期计划多目标优化及应用研究[J]. 黄金科学技术, 2018, 26(2): 228-233.
[3] 林格, 宫凤强. 不同受力维度下红砂岩失稳评判指标研究[J]. 黄金科学技术, 2018, 26(2): 195-202.
[4] 曹世荣,韩建文,李永欣,王晓军 *,冯萧,卓毓龙. 基于声发射概率密度函数固废胶结充填体损伤分析[J]. 黄金科学技术, 2017, 25(6): 92-98.
[5] 丁剑锋. 某金矿矿仓治理研究[J]. 黄金科学技术, 2017, 25(4): 52-57.
[6] 李宗楠,郭利杰*,余斌,史采星 . 基于宾汉姆体的高浓度尾砂浆剪切变稀规律研究[J]. 黄金科学技术, 2017, 25(4): 33-38.
[7] 白朝阳,王国伟,张鹏,刘拴平. 水平采空区群条件下矿柱回采爆破位置研究[J]. 黄金科学技术, 2017, 25(4): 81-86.
[8] 徐怀浩,李进友. 大尹格庄金矿磨矿系统增产降耗的应用实践[J]. 黄金科学技术, 2017, 25(3): 116-120.
[9] 王新民,荣帅,赵茂阳,张钦礼. 基于变权重理论和TOPSIS的尾砂浓密装置优选[J]. 黄金科学技术, 2017, 25(3): 77-83.
[10] 胡建华,杨春,周炳任,周科平,张绍国. 巷道压顶光面爆破裂隙扩展模拟及参数优化[J]. 黄金科学技术, 2017, 25(2): 45-53.
[11] 贾敏涛,汪群芳,吴冷峻. 深部开采热环境控制技术研究现状及展望[J]. 黄金科学技术, 2017, 25(2): 83-88.
[12] 肖伟晶,陈辰,李永欣,王晓军,曹世荣,韩建文. 分级加载条件下深部灰岩蠕变试验及模型[J]. 黄金科学技术, 2017, 25(2): 76-82.
[13] 刘志祥,龚永超,李夕兵. 基于分形理论和BP神经网络的充填料性能研究[J]. 黄金科学技术, 2017, 25(2): 38-44.
[14] 曹世荣,韩建文,肖伟晶,卓毓龙,王晓军,冯萧. 不同骨料含量胶结充填体的应力—应变关系研究[J]. 黄金科学技术, 2017, 25(1): 93-98.
[15] 赵国彦,侯俊,张小瑞,李地元,王涛. 磷石膏膏体充填体力学特性研究[J]. 黄金科学技术, 2016, 24(5): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!