img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (2): 271-277.doi: 10.11872/j.issn.1005-2518.2019.02.271

• 采选技术与矿山管理 • 上一篇    

基于Ventsim的深井线性热源对有效通风量的影响分析

王从陆(),李童   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2018-05-25 修回日期:2018-08-29 出版日期:2019-04-30 发布日期:2019-04-30
  • 作者简介:王从陆(1972-),男,江西万年人,博士研究生,从事矿山安全、公共安全、事故预防及控制研究工作。wangconglu@csu.edu.com
  • 基金资助:
    国家自然科学基金项目“微米级尘雾耦合作用力机理及其效能优化研究”(编号:51674289)和国家重点研发计划项目“金属非金属矿山采运过程物化防尘技术与装备”(编号:2017YFC0805204)

Analysis of Influence of Deep Mine’s Linear Heat Source on Effective Ventilation Based on Ventsim Software

Conglu WANG(),Tong LI   

  1. School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan,China
  • Received:2018-05-25 Revised:2018-08-29 Online:2019-04-30 Published:2019-04-30

摘要:

随着矿产资源开采深度的日益增加,深井通风因其通风网络规模大、环境复杂等,面临着成本及能耗高的问题。考虑到深井高温环境具有大量且便利的热能,基于对深井温差能可利用性的理论分析,通过在回风井深部设置线性热源,运用Ventsim数值模拟的方法,研究了线性热源作用下温差能对矿井有效通风量的影响。结果表明:在矿井巷道干球温度处于25~48 的范围内,线性热源的温度提升与矿井有效风量的提高呈正相关,且回风井内二者呈近似线性相关,但对于矿井底部风量基础值较小的水平巷道,回风井内线性热源对其有效风量的提升不明显;在线性热源作用下,不同的温度递增设置方案对于有效风量的提升也有一定影响,在线性热源温差范围相同的情况下,对温差间隔进行小幅度、多区间的合理设置,有利于提高温差能的利用率。

关键词: 线性热源, 深井高温, 有效风量, 通风优化, Ventsim, 数值模拟, 温差能

Abstract:

The huge energy consumption is the main problem in the mining of mineral resources in China.In recent years,due to the continuous consumption of underground mineral resources,deep mining operations are becoming more and more common.Increasing the effective ventilation of mines is critical to saving energy consumption.The high-temperature environment of deep mines stores a large amount of heat energy,and if it can be comprehensively utilized,it will produce huge benefits.In recent years,domestic and foreign researches on the absorption,storage,and transformation of thermal energy have yielded rich results.Based on this,the temperature difference formed between the high temperature of the deep well and the surface temperature can be used as an energy source,and the temperature difference can be used as a ventilation power can improve the effective ventilation of deep mines.This paper starts with the theoretical analysis, and analyzes the state change of ideal gas in thermal environment.Then the feasibility of temperature difference energy for improving air volume is demonstrated.Secondly, a deep mine model was established based on Ventsim three-dimensional ventilation software, and the heat energy stored in deep mines was simulated by setting a linear heat source. Finally,the representative necessary ventilation roadway in mine structure, such as main air inlet shaft, main return shaft and horizontal tunneling roadway, is selected as the research object to analyze the influence of different temperature setting and layout of linear heat source on the effective ventilation volume of mine.The specific scheme is as follows:The linear heat source power was increased from 1 000 W/m to 3 500 W/m incremented by 500 W/m, so as to study the change of effective mine ventilation under the action of linear heat source at different temperatures.The linear heat source was set to a range of 1 000 W/m to 4 000 W/m, and the linear heat source was successively distributed according to the increasing of 1 000 W/m and 500 W/m in the same section of return air shaft, to observe the influence of the linear heat source with different power decreasing gradient distribution on the effective ventilation volume of the mine. The results of the study are as follows: In mine laneway when the dry bulb temperature at 35~48 ℃, the temperature rise of the linear heat source is linear positively correlated with the increase of the effective mine air volume. For the horizontal roadway with a small air volume basis value at the bottom of the mine, the linear heat source in the return air shaft does not significantly improve its effective air volume.When the temperature difference range of the linear heat source is the same, the reasonable setting of small amplitude and multiple intervals of the temperature difference can generate effective pressure drop, improve the dynamic effect of the temperature difference energy, and thus improve the effective ventilation volume. And the scheme is more economical and can improve the utilization rate of temperature difference energy.

Key words: linear heat source, high temperature of deep well, effective ventilation, ventilation optimization, Ventsim, numerical simulation, temperature difference energy

中图分类号: 

  • X936

图1

一维巷道风流加热模型"

图2

Hardy-Cross方法中的风量压降关系图"

图3

基于Ventsim的某矿山三维模型"

图4

基于Ventsim的某矿山局部深井模型"

表1

用于深井线性热源与有效通风量研究的特征分支"

巷道序号分支描述长度/m
1回风井,-965.0~918.6 m46.4
2回风井,-918.6~-876.1 m42.5
3回风井,-876.1~-845.0 m31.1
4回风井,-845.0~-812.3 m,连有-845 m有轨水平巷道32.7
5回风井,-812.3~-785.0 m27.3
6回风井,-785.0~-751.8 m,连有-785 m有轨水平巷道33.2
7回风井,-751.8~-725.0 m26.8
8回风井,-725.0~695.5 m29.5
9有轨水平巷道,-965.0 m57.7
10有轨水平巷道,-965.5~-966.2 m48.6
11有轨水平巷道,-965.0 m41.5
12水平掘进巷道,-645 m39.3
13水平掘进巷道,-645 m40.4
14水平掘进巷道,-645 m45.7
15水平掘进巷道,-623 m63.5

图5

序号1~15巷道的线性热源对通风量的影响"

表2

具有温差梯度的线性热源对风量的影响"

巷道序号A组线性热源/(W·m-1风量平均/(m3·s-1平均干球温度/压力增减/PaB组线性热源/(W·m-1平均风量/(m3·s-1平均干球温度/压力增减/Pa
11 00029.736.6-1.21 00029.536.5-1.0
2

1 000

2 000

30.537.6-1.01 50029.937.4-1.2
330.738.3-1.42 00030.338.7-0.7
4

2 000

3 000

31.840.1-0.72 50031.939.8-0.7
532.042.1-1.03 00032.441.6-0.8
6

3 000

4 000

98.737.7-10.73 50099.037.5-10.7
799.038.3-6.34 00099.838.0-6.3
899.338.4-7.0100.138.1-7.0
929.336.0-13.529.336.0-13.5
1016.336.6-3.616.336.6-3.6
1113.036.7-2.013.036.7-2.0
1 何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
HeManchao.Conception system and evaluation indexes for deep engineering[J].Chinese Journal of Rock Mechanics and Engineering, 2005,24(16):2854-2858.
2 赵小稚,崔嵛,王敬志.基于Ventsim的深井采矿热环境分析[J].铜业工程,2014,127(3):52-54,96.
ZhaoXiaozhi, CuiYu, WangJingzhi.Thermal environment analysis of deep mining based on Ventsim software[J].Copper Engineering, 2014,127(3):52-54,96.
3 李刚,吴超.抱伦金矿通风系统优化研究[J].黄金科学技术,2016,24(1):92-96.
LiGang, WuChao. Study on optimization of ventilation system in Baolun gold mine[J].Gold Science and Technology, 2016,24(1):92-96.
4 王波,陈宝智,陈喜山,等.排风侧分区多级机站通风系统的应用实践[J].黄金科学技术,2008,16(4):62-65,69.
WangBo, ChenBaozhi, ChenXishan, et al.Using and study of multi-stages ventilation system in exhaust section[J].Gold Science and Technology, 2008,16(4):62-65,69.
5 胡汉华,余斌斌.控制循环风流新方法研究[J].黄金科学技术,2016,24(5):61-66.
HuHanhua, YuBinbin. Research on the methods of controlling recirculating air[J].Gold Science and Technology, 2016,24(5):61-66.
6 程小虎,曾艳华.热阻力概念的修正及计算方法[J].防灾减灾工程学报,2006,26(4):404-408.
ChengXiaohu, ZengYanhua. Revised concept and calculation methods of thermal drag[J].Joural of Disaster Prevention and Mitigation Engineering,2006,26(4):404-408.
7 胡华瑞,陈庆发,陈青林,等.高温深井风温影响因子特性与降温基础研究[J].矿业研究与开发,2017,37(7):101-106.
HuHuarui, ChenQingfa, ChenQinglin, et al.The characteristics of influence factors and the cooling schemes for wind temperature in high-temperature deep well[J].Mining Research and Development, 2017,37(7):101-106.
8 胡汉华.深热矿井环境控制[M].长沙:中南大学出版社, 2008.
HuHanhua.Environmental Control of Deep Thermal Mine[M].Changsha: Central South University Press,2008.
9 贾敏涛,汪群芳,吴冷峻.深部开采热环境控制技术研究现状及展望[J].黄金科学技术,2017,25(2):83-88.
JiaMintao, WangQunfang, WuLengjun.Research status and prospect of thermal environmental control technology under deep mining[J].Gold Science and Technology, 2017,25(2):83-88.
10 陈宜华,孙浩.深井高温矿床井下热源与热量分析[J].金属矿山,2011,40(3):132-135.
ChenYihua, SunHao.Analysis on the underground heat source and heat of deep high temperature deposits[J]. Metal Mine,2011,40(3):132-135.
11 鹿浩,罗周全,MoeMomayez.井巷多断面岩层热传递方式与深井热环境动态分析[J].东北大学学报(自然科学版),2015,36(3):423-427.
LuHao, LuoZhouquan, MoeMomayez. Heat transfer in strata with different shape of cross-section and dynamic simulation of thermal environment for deep subsurface mine[J].Journal of Northeastern University (Natural Science) ,2015,36(3):423-427.
12 NoothongW, SuwannapanS, ThianpongC, et al. Enhanced heat transfer in a heat exchanger square-duct with discrete v-finned tape inserts[J].Chinese Journal of Chemical Engineering,2015,23(3): 490-498.
13 ZhangJ, DiaoY, ZhaoY, et al. An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques[J].Experimental Thermal and Fluid Science,2017,81(2): 21-32.
14 李孜军,陈艳丽.基于Ventsim的矿井通风风阻参数优化[J].金属矿山,2014,43(3):136-140.
LiZijun, ChenYanli. Optimization of mine ventilation resistance parameter based on Ventsim software[J].Metal Mine,2014,43(3):136-140.
15 万三明,刘祖文,朱易春,等.基于Ventsim软件的金属矿山矿井通风系统优化[J].江西理工大学学报,2014,35(5):12-16.
WanSanming, LiuZuwen, ZhuYichun, et al. Optimization of metal mine ventilation system based on Ventsim software[J]. Journal of Jiangxi University of Science and Technology,2014,35(5):12-16.
16 肖云,田昌贵,李元松.基于GM(1,1)模型的铜绿山矿井水害预测与防治[J].安全与环境工程,2013,20(1):115-119.
XiaoYun, TianChanggui, LiYuansong.Forecast and prevention of water disaster in Tonglushan mine based on GM(1,1) model[J].Safety and Environmental Engineering,2013,20(1):115-119.
17 王从陆,吴国珉,王根.风机并联运转效能分析及工况优化[J].金属矿山,2013,42(10):155-157.
WangConglu, WuGuomin, WangGen.Operating point optimization and effectiveness analysis of parallel fan[J]. Metal Mine,2013,42(10):155-157.
18 樊满华.深井开采通风技术[J].黄金科学技术,2001,9(6):36-42.
FanManhua.The ventilation technology on deep mining[J]. Gold Science and Technology, 2001,9(6):36-42.
19 张柬,张希巍,王洪波,等.基于Ventsim软件矿山通风系统设计的优化[J].有色矿冶,2013,29(6):7-9.
ZhangJian, ZhangXiwei, WangHongbo, et al.Optimization of mine ventilation system design based on Ventsim software[J]. Non-Ferrous Mining and Metallurgy, 2013,29(6):7-9.
20 钟茂华.火灾过程动力学特性分析[M].北京:科学出版社,2007.
ZhongMaohua. Dynamic Analysis of Fire Process[M]. Beijing: Science Press,2007.
[1] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[2] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[3] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[4] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[5] 陈冲,李夕兵,冯帆. 诱导巷道的围岩松动破坏区数值研究[J]. 黄金科学技术, 2018, 26(6): 771-779.
[6] 刘连生,钟清亮,闫雷,钟文,梁龙华. 频繁生产爆破加载下饱水岩体累积损伤效应声波测试研究[J]. 黄金科学技术, 2018, 26(6): 750-760.
[7] 彭博. 库水位骤降耦合不同类型降雨泥岩边坡渗透稳定性数值模拟研究[J]. 黄金科学技术, 2018, 26(5): 647-655.
[8] 李光,马凤山,刘港,郭捷,郭慧高,寇永渊. 金川矿区深部巷道支护效果评价及参数优化研究[J]. 黄金科学技术, 2018, 26(5): 605-614.
[9] 胡建华,任启帆,亓中华,张纪伟. 卧虎山铁矿采场极限暴露面积回归优化模型[J]. 黄金科学技术, 2018, 26(4): 503-510.
[10] 胡桂英, 刘科伟, 杜鑫, 李萧翰. 光面掏槽爆破技术的研究及其在巷道掘进中的应用[J]. 黄金科学技术, 2018, 26(3): 349-356.
[11] 汪海波, 魏国力, 宗琦, 徐颖. 节理发育岩体巷道掘进爆破数值模拟与应用研究[J]. 黄金科学技术, 2018, 26(3): 342-348.
[12] 杨明财, 盛建龙, 叶祖洋, 董舒. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179-186.
[13] 任伟成,乔登攀,周志伟. 立式砂仓尾砂体积分数随砂仓高度变化规律研究[J]. 黄金科学技术, 2018, 26(1): 64-73.
[14] 马凤山,李克蓬,杜云龙,侯成录,李威,张国栋 . 三山岛金矿海底开采F1断裂防突结构可能的破坏形式分析 [J]. 黄金科学技术, 2017, 25(5): 47-56.
[15] 白朝阳,王国伟,张鹏,刘拴平. 水平采空区群条件下矿柱回采爆破位置研究[J]. 黄金科学技术, 2017, 25(4): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!