黄金科学技术 ›› 2022, Vol. 30 ›› Issue (3): 392-403.doi: 10.11872/j.issn.1005-2518.2022.03.145
摘要:
目前岩爆预测的真实训练数据量小、数据存在缺失,为了更加准确地预测岩爆等级,提出了一种基于链式随机森林多重插补(MICE_RF)算法的组合赋权—极限随机树(ET)预测模型。首先,在选取岩爆灾害主要评判指标的基础上,采用MICE_RF算法插补缺失数据;然后,由改进层次分析法(IAHP)和基于指标相关性的权重确定方法(CRITIC)确定指标主、客观权重,并引入权向量距离概念对指标组合赋权;最后,将插补和赋权后数据集采用ET算法,构建岩爆等级预测模型。利用国内外工程实例数据进行20次随机抽样试验,并与其他模型进行对比分析。结果表明:MICE_RF插补后可显著提高岩爆模型预测效果;改进AHP-CRITIC法较改进前更具优势,该模型平均预测准确率为93.10%,各比较指标结果均优于对比模型,预测结果更稳定。
中图分类号:
Acurna E, Rodriguez C,2004.The treatment of missing values and its effect in the classifier accuracy[C]//Proceedings of the Meeting of the International Federation of Classification Societies (IFCS).Chicago:International Federation Classification Societies: 639-647. | |
Afraei S, Shahriar K, Madani S H,2019.Developing intelligent classification models for rockburst prediction after recognizing significant predictor variables,Section 1:Literature review and data preprocessing procedure[J].Tunnelling and Underground Space Technology,83:324-353. | |
Boshuizen H C, Knook D L,1999.Multiple imputation of missing blood pressure covariates in survival analysis[J].Statistics in Medicine,(7):681-694. | |
Chen Juan, Wang Xianyu, Luo Lingling,et al,2020.Missing value filling effect:A comparison between machine learning and statistical learning[J].Statistics and Decision Making,36 (17):28-32. | |
Diakoulaki D, Mavrotas G, Papayannakis L,1995.Determining objective weights in multiple criteria problems:The CRITIC method[J].Computers and Operations Research,22(7):763-770. | |
Huang Jian, Xia Yuanyou, Lin Manqing,2019.Study on multi-dimensional cloud model prediction of rockburst based on improved combination weighting[J].Chinese Journal of Safety Science,29 (7):26-32. | |
Li Mingliang, Li Kegang, Qin Qingci,et al,2021.Discussion and selection of machine learning algorithm model for rockburst intensity grade prediction [J].Chinese Journal of Rock Mechanics and Engineering,40 (Supp.1):2806-2816. | |
Li Renhao, Gu Helong, Li Xibing,et al,2020.A PSO-RBF neural network model for rockburst tendency prediction [J].Gold Science and Technology,28(1):134-141. | |
Liu Fei,2020.Study on the Evolution and Warning of Rockbursts in Deep-buried Tunnels of the Hanjiang-to-Weihe River Diversion Project by Microseismic Monitoring [D].Dalian:Dalian University of Technology. | |
Liu Fengqin,2009.Multiple imputation of missing values of income variables based on chain equation[J].Statistical Research,26 (1):71-77. | |
Long Yanfang,2017.Research on Short-term Traffic Flow Prediction Model Based on Ensembles of Extremely Randomized Trees[D].Changsha:Hunan University. | |
Lu Furan, Chen Jianhong,2018.Rockburst prediction method based on AHP and entropy weight TOPSIS model [J].Gold Science and Technology,26(3):365-371. | |
Nugroho H, Utama N P, Surendro K,2021.Class center-based firefly algorithm for handling missing data[J].Journal of Big Data,8(1):1-14. | |
Qian Chao, Chen Jianxun, Luo Yanbin,et al,2016.Missing data interpolation method for highway tunnel operation based on random forest [J].Transportation System Engineering and Information,16 (3):81-87. | |
Saaty T L,1994.How to make a decision:The analytic hierarchy process[J].Interfaces,24(6):19-43. | |
Shang Huandi, Wang Ping, Pei Mingsong,et al,2017.Rockburst prediction based on rough set and weighted grey correlation analysis[J].Industrial Safety and Environmental Protection,43 (6):47-51. | |
Song Liang, Wan Jianzhou,2020.Comparative study on missing data interpolation methods[J].Statistics and Decision Ma-king,36(18):10-14. | |
Tan Wenkan, Ye Yicheng, Hu Nanyan,et al,2021.Strong rockburst prediction based on LOF and improved SMOTE algorithm[J].Chinese Journal of Rock Mechanics and Engine-ering,40(6):1186-1194. | |
Tang Zhili, Xu Qianjun,2020.Research on rockburst prediction based on nine machine learning algorithms[J].Chinese Journal of Rock Mechanics and Engineering,39(4):773-781. | |
Tian Rui, Meng Haidong, Chen Shijiang,et al,2020a.Prediction of intensity classification of rockburst based on deep neural network [J].Journal of China Coal Society,45(Supp.1):191-201. | |
Tian Rui, Meng Haidong, Chen Shijiang,et al,2020b.Prediction model of rockburst intensity classification based on RF-AHP-Cloud model[J].Chinese Journal of Safety Science,30(7):166-172. | |
Wang Junxia, Zhang Yu, Yan Zheming,et al,2013.Research on performance evaluation of rural public goods supply based on combination weighting method[J].Journal of Northwest University(Philosophy and Social Sciences Edition),43(2):117-121. | |
Wang Xianlong, Feng Zao, Zhao Yanfeng,2021.An active learning method for unbalanced sample set of pipeline blockage[J].Chemical Automation and Instrumentation,48(3):222-231. | |
Wang Yuanhan, Li Wodong, Li Qiguang,et al,1998 .Fuzzy mathematics comprehensive evaluation method for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering,(5):15-23. | |
Wu H W, Zhen J, Zhang J,2020.Urban rail transit operation safety evaluation based on an improved CRITIC method and cloud model[J].Journal of Rail Transport Planning & Management,16:100206.. | |
Wu Tongyu, Wu Shaoxiong,2018.Missing value interpolation of statistical data based on kernel principal component analysis and particle swarm optimization support vector machine[J].Statistics and Decision Making,34(8):21-24. | |
Xie X, Jiang W, Guo J,2021.Research on rockburst prediction classification based on GA-XGB model[J].IEEE Access,9:83993-84020. | |
Xie Xuebin, Li Dexuan, Kong Lingyan,et al,2020.Prediction model of rockburst tendency grade based on CRITIC-XGB algorithm[J].Chinese Journal of Rock Mechanics and Engineering,39(10):1975-1982. | |
Yin Xin, Liu Quansheng, Wang Xinyu,et al,2020.Prediction model of rockburst intensity classification based on combined weighting and attribute interval recognition theory [J]. Journal of China Coal Society,45(11):3772-3780. | |
Zhang Xiangyu,2021.Study on Rock Burst Mechanism and Comprehensive Prediction Method of Rock Mass with Structural Plane [D].Jinan:Shandong University. | |
Zheng Y, Zhong H, Fang Y,et al,2019.Rockburst prediction model based on entropy weight integrated with grey relational BP neural network[J].Advances in Civil Engineering,(4):1-8.. | |
陈娟,王献雨,罗玲玲,等,2020.缺失值填补效果:机器学习与统计学习的比较[J].统计与决策,36(17):28-32. | |
黄建,夏元友,吝曼卿,2019.基于改进组合赋权的岩爆多维云模型预测研究[J].中国安全科学学报,29(7):26-32. | |
李明亮,李克钢,秦庆词,等,2021.岩爆烈度等级预测的机器学习算法模型探讨及选择[J].岩石力学与工程学报,40(增1):2806-2816. | |
李任豪,顾合龙,李夕兵,等,2020.基于PSO-RBF神经网络模型的岩爆倾向性预测[J].黄金科学技术,28(1):134-141. | |
刘飞,2020.引汉济渭深埋隧洞岩爆孕育特征与微震监测预警研究[D].大连:大连理工大学. | |
刘凤芹,2009.基于链式方程的收入变量缺失值的多重插补[J].统计研究,26(1):71-77. | |
龙艳芳,2017.基于极限随机树集成的短时交通流预测模型研究[D].长沙:湖南大学. | |
卢富然,陈建宏,2018.基于AHP和熵权TOPSIS模型的岩爆预测方法[J].黄金科学技术,26(3):365-371. | |
钱超,陈建勋,罗彦斌,等,2016.基于随机森林的公路隧道运营缺失数据插补方法[J].交通运输系统工程与信息,16(3):81-87. | |
商欢迪,王平,裴明松,等,2017.基于粗糙集和加权灰色关联分析的岩爆预测[J].工业安全与环保,43(6):47-51. | |
宋亮,万建洲,2020.缺失数据插补方法的比较研究[J].统计与决策,36(18):10-14. | |
谭文侃,叶义成,胡南燕,等,2021.LOF与改进SMOTE算法组合的强烈岩爆预测[J].岩石力学与工程学报,40(6):1186-1194. | |
汤志立,徐千军,2020.基于9种机器学习算法的岩爆预测研究[J].岩石力学与工程学报,39(4):773-781. | |
田睿,孟海东,陈世江,等,2020a.基于深度神经网络的岩爆烈度分级预测[J].煤炭学报,45(增1):191-201. | |
田睿,孟海东,陈世江,等,2020b.RF-AHP-云模型下岩爆烈度分级预测模型[J].中国安全科学学报,30(7):166-172. | |
王俊霞,张玉,鄢哲明,等,2013.基于组合赋权方法的农村公共产品供给绩效评价研究[J].西北大学学报(哲学社会科学版),43(2):117-121. | |
王显龙,冯早,赵燕锋,2021.一种面向管道堵塞不均衡样本集的主动学习方法[J].化工自动化及仪表,48(3):222-231. | |
王元汉,李卧东,李启光,等,1998.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,(5):15-23. | |
吴桐雨,吴少雄,2018.基于核主成分分析和粒子群优化支持向量机的统计数据缺失值插补[J].统计与决策,34(8):21-24. | |
谢学斌,李德玄,孔令燕,等,2020.基于CRITIC-XGB算法的岩爆倾向等级预测模型[J].岩石力学与工程学报,39(10):1975-1982. | |
殷欣,刘泉声,王心语,等,2020.基于组合赋权和属性区间识别理论的岩爆烈度分级预测模型[J].煤炭学报,45(11):3772-3780. | |
张翔宇,2021.含结构面岩体岩爆发生机理及综合预测方法研究[D].济南:山东大学. |
[1] | 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108. |
[2] | 杨玮, 邓博, 龙涛, 邓莎, 薛梦鸽, 方楠. 基于效果—效率的金矿绿色矿山建设综合评价研究[J]. 黄金科学技术, 2023, 31(6): 919-929. |
[3] | 杨玮, 薛梦鸽, 龙涛, 邓莎, 邓博, 方楠. 基于DPSIR模型的黄金行业绿色矿山建设综合评价研究[J]. 黄金科学技术, 2023, 31(4): 635-645. |
[4] | 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712. |
[5] | 柯愈贤,王成,方立发,廖宝泉. 基于组合权重和物元分析的矿山安全生产状况研究[J]. 黄金科学技术, 2020, 28(6): 910-919. |
[6] | 李彤彤, 王玺, 刘焕新, 侯奎奎, 李夕兵. 基于组合赋权的T-FME岩爆倾向性预测模型研究及应用[J]. 黄金科学技术, 2020, 28(4): 565-574. |
[7] | 赵国彦,吴攀,朱幸福,赵源,李洋,邱菊. 基于灰色关联分析的三山岛金矿绿色开采技术优先级评价[J]. 黄金科学技术, 2019, 27(6): 835-843. |
[8] | 李欢,明俊桦,石晓凤. 基于博弈论和模糊综合评判的锌冶炼企业清洁生产评价[J]. 黄金科学技术, 2018, 26(5): 635-646. |
[9] | 周海林,杨珊,陈建宏*. 黄金矿山清洁生产评价指标体系研究与应用[J]. 黄金科学技术, 2017, 25(5): 93-100. |
[10] | 万孝衡,王新民,朱阳亚,姜志良,陈秋松. 基于组合赋权TOPSIS法的采场结构参数优选[J]. 黄金科学技术, 2014, 22(5): 69-73. |
|