img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (2): 264-270.doi: 10.11872/j.issn.1005-2518.2020.02.030

• 采选技术与矿山管理 • 上一篇    下一篇

基于CRITIC-CW法的地下矿岩体质量评价

戚伟1,2(),李威1,李振阳3,4,赵国彦3   

  1. 1.山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
    2.北京科技大学土木与资源工程学院,北京 100083
    3.中南大学资源与安全工程学院,湖南 长沙 410083
    4.北京奥信化工科技发展有限责任公司,北京 100040
  • 收稿日期:2019-04-17 修回日期:2019-11-03 出版日期:2020-04-30 发布日期:2020-05-07
  • 作者简介:戚伟(1980-),男,山东泰安人,工程师,从事采矿工艺及岩石力学方面的研究工作。qiwei109@163.com
  • 基金资助:
    “十三五”国家重点研发计划课题“深部金属矿绿色开采关键技术研发与示范”(2018YFC0604606)

Rock Mass Quality Evaluation of Underground Mine Based on CRITIC-CW Method

Wei QI1,2(),Wei LI1,Zhenyang LI3,4,Guoyan ZHAO3   

  1. 1.Sanshandao Gold Mine,Shandong Gold Mining(Laizhou) Co. ,Ltd. ,Laizhou 261442,Shandong,China
    2.School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China
    3.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    4.Beijing Auxin Chemical Technology Ltd,Beijing 100040,China
  • Received:2019-04-17 Revised:2019-11-03 Online:2020-04-30 Published:2020-05-07

摘要:

岩体质量评价结果是地下矿各类工程的重要基础数据。针对影响岩体质量的因素众多,且各因素间模糊性显著的特点,为更准确地评价地下矿岩体质量,提出了一种可定量分析影响岩体质量各因素间模糊性的CRITIC-CW法。选取了岩石质量指标RQD、岩石单轴饱和抗压强度RW、岩体完整性系数Kv、结构面强度系数Kf和地下水渗水量ω共5个指标用于评价地下矿岩体质量。收集了国内外20组岩体质量评价的样本数据,采用CRITIC法计算样本数据的离散性和内在联系,获得了评价指标的权重。采用CRITIC-CW法对20组岩体质量评价样本进行评价,结果误判仅为一例,表明CRITIC-CW法具有较高的准确性和可靠性。采用CRITIC-CW法对三山岛金矿新立矿区部分采场的岩体质量进行评价,结果表明:所评价采场的岩体质量主要为Ⅲ级和Ⅳ级,岩体质量较差,依据岩体质量评价结果,对评价等级为Ⅳ级的采场及周边工程加强支护后,矿区冒落现象显著减少。

关键词: 岩体质量评价, CRITIC, 云模型(CW), 地下矿, 确定度, 三山岛金矿

Abstract:

The rock mass of underground mine is a very complex dynamic system,which has many influencing factors.The rock mass quality evaluation is not only an important means to understand the characteristics of underground mine rock mass,but also an important basic data of underground mine design,construction and disaster prevention.The fuzzy and uncertainty of rock mass quality evaluation are strong.Cloud model theory can analyze the fuzzy and quantitative problems,which is very suitable for the random and fuzzy evaluation of multi indexes of rock mass quality evaluation.In order to evaluate the rock mass quality of underground mine more accurately and efficiently,the CRITIC-CW method was proposed,which can quantitatively analyze the fuzziness among many factors affecting the rock mass quality.According to the characteristics of many influencing factors of rock mass quality,rock quality index (RQD),rock uniaxial saturated compressive strength(RW),rock mass integrity coefficient(Kv),structural plane strength coefficient(Kf) and groundwater seepage amount(ω) were selected to evaluate the quality of underground mine and rock mass.20 groups of sample data of rock mass quality evaluation at home and abroad were collected.The original data were standardized,the standard deviation,the correlation coefficient and the amount of information were calculated by using critical method to quantify the discreteness and internal relationship of sample data,and then the weight of each evaluation index was obtained.Based on the CRITIC-CW method,20 groups of rock mass quality evaluation samples were evaluated,and only one case is misjudged,which shows that the CRITIC-CW method has high accuracy and reliability.Xinli mining area of Sanshandao gold mine is the only gold mine under the sea in China.The geological conditions of the mining area and the quality of surrounding rock are complex.In the production process,local pumice falling,roof falling,collapse and other disasters often occur due to blasting vibration,mechanical drilling and other activities,that seriously threatening the safety of mine production.In order to understand the rock mass quality of the mining area better,the CRITIC-CW method was used to evaluate the rock mass quality of some stopes in Xinli mining area of Sanshandao gold mine.The results show that the rock mass quality of the evaluated stopes is mainly class Ⅲ and class Ⅳ,and the rock mass quality is general.According to the results of the rock mass quality evaluation,after strengthening the support for the stopes and surrounding works with the evaluation class Ⅳ,the caving phenomenon of the mining area is obvious decrease.

Key words: rock mass quality evaluation, CRITIC, Cloud Model (CW), underground mine, degree of certainty, Sanshandao gold mine

中图分类号: 

  • TD3

表1

岩体质量分级标准[24,25,26]"

类别RQD/%RW/MPaKVKfω/[L·(min·10 m)-1
90~100200~1201.00~0.751.0~0.80~5
75~90120~600.75~0.450.8~0.65~10
50~7560~300.45~0.300.6~0.410~25
25~5030~150.30~0.200.4~0.225~125
0~2515~00.20~0.000.2~0.0125~300

表2

岩体质量评价样本数据"

样本评价指标实测等级本文结果
X1X2X3X4X5
171.890.10.570.450.0
251.040.20.380.5510.5
352.025.00.220.5212.0
468.090.00.380.3821.0
586.3105.00.680.756.3
678.875.00.530.658.8
768.852.50.410.5513.8
887.095.00.700.509.8
976.090.00.570.5011.0
1050.035.00.300.3520.0
1168.090.00.570.3518.5
1282.095.00.700.350.0
1375.087.30.300.630.0
1456.337.50.340.4521.3
1543.826.30.280.3550.6
1631.318.80.230.25100.0
1752.528.60.380.1623.0
18100.0200.01.001.000.0
1997.5180.00.940.951.3
2095.0160.00.880.952.5

图1

各指标隶属于不同岩体质量等级的云模型"

表3

新立矿区各评价指标实测值"

样本位置评价指标
X1X2X3X4X5
-200 m中段1#采场82810.400.4822.0
-200 m中段2#采场80810.400.4517.0
-240 m中段5#采场78800.430.4275.0
-320 m中段2#采场55820.430.4362.5
-320 m中段3#采场75780.400.4217.5

图2

各样本隶属于不同岩体质量等级的确定度"

表4

新立矿区样本评价结果"

样本位置最高确定度评价结果
-200 m中段1#采场0.6333
-200 m中段2#采场0.7067
-240 m中段5#采场0.4437
-320 m中段2#采场0.4578
-320 m中段3#采场0.7161
1 文畅平. 基于属性数学理论的岩体质量分级方法[J].水力发电学报,2008,27(3):75-80.
Wen Changping.Classification of rock-mass stability based on attributive mathematical theory[J].Journal of Hydroelectric Engineering,2008,27(3):75-80.
2 赵星光,蔡明,蔡美峰.剪胀对地下工程岩体位移的影响——以加拿大 Donkin-Morien隧道为例[J].岩石力学与工程学报,2010,29(11):2186-2195.
Zhao Xingguang,Cai Ming,Cai Meifeng.Influence of dilation on rock mass displacement around underground excavations:A case study of Donkin-Morien tunnel in Canada[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):2185-2195.
3 Cai M,Kaiser P.Visualization of rock mass classification systems[J].Geotechnical and Geological Engineering,2006,24(4):1089-1102.
4 Barton N,Lien R,Lunde J.Engineering classification of rock masses for the design of tunnel support[J].Rock Mechanics,1974,6(4):189-236.
5 Bieniawski Z T.Engineering classification of jointed rock masses[J].Transactions of South African Institution of Civil Engineers,1973,15(12):335-344.
6 邬爱清,汪斌.基于岩体质量指标BQ的岩质边坡工程岩体分级方法[J].岩石力学与工程学报,2014,33(4):699-706.
Wu Aiqing,Wang Bin.Engineering rock mass classification method based on rock mass quality index BQ for rock slope[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(4):699-706.
7 陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002,21(12):1894-1900.
Chen Changyan,Wang Guirong.Discussion on the interrelation of various rock mass quality classification systems at home and abroad[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(12):1894-1900.
8 许梦国,王明旭,王平,等.程潮铁矿岩体分级及其在巷道支护中的应用[J].黄金,2013,34(4):41-45.
Xu Mengguo,Wang Mingxu,Wang Ping,et al.Rock mass classification and its application in tunnel support in Chengchao iron mine[J].Gold,2013,34(4):41-45.
9 穆锡川,李景波,刘杰,等.大柳行金矿床节理裂隙调查与岩体质量评价[J].黄金,2017,38(5):43-46,53.
Mu Xichuan,Li Jingbo,Liu Jie,et al.Investigation into the joint fissures and evaluation of rock mass quality in Daliuxing gold deposit[J].Gold,2017,38(5):43-46,53.
10 Shen Y J,Yan R X,Yang G S,et al.Comparisons of evaluation factors and application effects of the new[BQ]GSI system with international rock mass classification systems[J].Geotechnical and Geological Engineering,2017,35(6):2523-2548.
11 刘强,李夕兵,梁伟章.岩体质量分类的PCA-RF模型及应用[J].黄金科学技术,2018,26(1):49-55.
Liu Qiang,Li Xibing,Liang Weizhang.PCA-RF model for the classification of rock mass quality and its application[J].Gold Science and Technology,2018,26(1):49-55.
12 张海磊,严文炳,郭生茂,等.基于ELM模型的岩体质量分级及应用[J].黄金,2018,39(12):32-34.
Zhang Hailei,Yan Wenbing,Guo Shengmao,et al.Classification of rock mass quality in a mine based on ELM model and its application[J].Gold,2018,39(12):32-34.
13 邱道宏,陈剑平,阙金声,等.基于粗糙集和人工神经网络的洞室岩体质量评价[J].吉林大学学报(地球科学版),2008,38(1):86-91.
Qiu Daohong,Chen Jianping,Que Jinsheng,et al.Evaluation of tunnel rock quality with routh sets theory and artificial neural networks[J].Journal of Jilin University(Earth Science),2008,38(1):86-91.
14 胡建华,艾自华.基于最优组合赋权的地下矿山岩体质量可拓评价模型[J].黄金科学技术,2017,25(4):39-45.
Hu Jianhua,Ai Zihua.Extension evaluation model of rock mass quality for underground mine based on optimal combination weighting[J].Gold Science and Technology,2017,25(4):39-45.
15 吴肖坤,刘敦文,江帆,等.基于特征值域的可拓学理论的工程岩体质量评价[J].黄金科学技术,2015,23(2):68-75.
Wu Xiaokun,Liu Dunwen,Jiang Fan,et al.Extension theory of engineering rock mass quality evaluation based on the feature range[J].Gold Science and Technology,2015,23(2):68-75.
16 宫凤强,李夕兵.距离判别分析法在岩体质量等级分类中的应用[J].岩石力学与工程学报,2007,26(1):190-194.
Gong Fengqiang,Li Xibing.Application of distance discriminant analysis method to classification of engineering quality of rock masses[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(1):190-194.
17 梁桂兰,徐卫亚,谈小龙.基于熵权的可拓理论在岩体质量评价中的应用[J].岩土力学,2010,31(2):535-540.
Liang Guilan,Xu Weiya,Tan Xiaolong.Application of extension theory based on entropy weight to rock quality evaluation[J].Rock and Soil Mechanics,2010,31(2):535-540.
18 陈赞成,余斌,胡建军,等.呼的合铜矿工程地质调查与岩体质量评价[J].黄金,2013,34(6):35-39.
Chen Zancheng,Yu Bin,Hu Jianjun,et al.Engineering geological investigation and rock mass quality evaluation of Hudehe copper mine[J].Gold,2013,34(6):35-39.
19 McEwen T,Kapyaho A,Hella P,et al.Rock suitability classification RSC 2012[R].Helsinki:Posiva Oy,2012.
20 李德毅,杜鹢.不确定性人工智能[M].北京:国防工业出版社,2005.
Li Deyi,Du Yu.Artificial Intelligence with Uncertainty [M].Beijing:National Defense Industry Press,2005.
21 Diakoulaki D,Mavrotas G,Papayannakis L.Determining objective weights in multiple criteria problems:The CRITIC method[J].Computers and Operations Research,1995,22(7):763-770.
22 李绍红,王少阳,朱建东,等.基于权重融合和云模型的岩爆倾向性预测研究[J].岩土工程学报,2018,40(6):1075-1083.
Li Shaohong,Wang Shaoyang,Zhu Jiandong,et al.Prediction of rock burst tendency based on weighted fusion and improved cloud model[J].Chinese Journal of Geotechnical Engineering,2018,40(6):1075-1083.
23 赵国彦,梁伟章,洪昌寿.采空区稳定性的改进云模型二维评判[J].中国安全科学学报,2015,25(10):102-108.
Zhao Guoyan,Liang Weizhang,Hong Changshou. Improved cloud model for two dimensional stability evaluation of goaf[J].China Safety Science Journal,2015,25(10):102-108.
24 胡建华,尚俊龙,雷涛.基于RS-TOPSIS法的地下工程岩体质量评价[J].中南大学学报(自然科学版),2012,43(11):4412-4419.
Hu Jianhua,Shang Junlong,Lei Tao.Rock mass quality evaluation of underground engineering based on RS-TOPSIS method[J].Journal of Central South University(Science and Technology),2012,43(11):4412-4419.
25 蔡广奎.围岩稳定性分类的BP 网络模型的研究[D].南京:河海大学,2001.
Cai Guangkui.Study of the BP Neural Network on the Stability Classification of Surrounding Rocks[D].Nanjing:Hehai University,2001.
26 杨朝晖,刘浩吾.地下工程围岩稳定性分类的人工神经网络模型[J].四川联合大学学报(工程科学版),1999,3(4):66-72.
Yang Chaohui,Liu Haowu.Artificial neural network model for the stability classification of adjoining rock of underground construction[J].Journal of Sichuan Union University(Engineering Science Edition),1999,3(4):66-72.
[1] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[2] 赵国彦, 胡凯译, 李洋, 刘雷磊, 王猛. 基于BWO-RF模型的岩体质量评价方法[J]. 黄金科学技术, 2024, 32(2): 270-279.
[3] 凡奥奇, 王万禄, 李树建, 张斌, 刘映辉, 吴浩. 基于优化组合赋权的可拓学磷矿山岩体质量评价[J]. 黄金科学技术, 2024, 32(1): 132-143.
[4] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[5] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[6] 郑明贵, 王馨悦, 顾东明, 张研博. “一带一路”背景下巴基斯坦矿业投资环境风险评价与预测[J]. 黄金科学技术, 2023, 31(4): 646-658.
[7] 刘鑫, 王李管, 彭朝晖, 邹昀, 鲁芳. 地下矿卡智能调度与生产管理系统设计及应用[J]. 黄金科学技术, 2023, 31(4): 680-688.
[8] 孙越,邹昀,康文宝,王黎明,贾智. 地下无人矿卡智能调度系统框架及应用研究[J]. 黄金科学技术, 2023, 31(1): 133-143.
[9] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[10] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[11] 邓龙鑫, 陈建宏. 基于博弈论的主客观组合权重TOPSIS采矿方法优选[J]. 黄金科学技术, 2022, 30(2): 282-290.
[12] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[13] 谭正华,文阳,王李管,李国泰. 基于关键链的地下矿采掘计划编制优化方法[J]. 黄金科学技术, 2021, 29(4): 602-611.
[14] 赵兴东,曾楠,陈玉民,魏慧,王成龙,侯成录,杜云龙,范纯超. 三山岛金矿井下无人开采区域中深孔落矿嗣后充填连续采矿工艺设计[J]. 黄金科学技术, 2021, 29(2): 200-207.
[15] 李杰林,杨承业,彭朝智,周科平,刘锐凯. 三维激光扫描技术在地下巷道岩体结构面识别的应用[J]. 黄金科学技术, 2021, 29(2): 236-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!