img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (5): 637-647.doi: 10.11872/j.issn.1005-2518.2019.05.637

• 矿产勘查与资源评价 •    下一篇

黄铁矿标型特征对胶东三山岛金矿深部矿化的启示

陈玉民1(),张华锋2,张聪颖2,胡换龙3,王昭坤1,曾庆栋3,范宏瑞3()   

  1. 1. 山东黄金集团有限公司,山东 济南 250014
    2. 中国地质大学(北京),北京 100083
    3. 中国科学院地质与地球物理研究所矿产资源研究院重点实验室,北京 100029
  • 收稿日期:2019-08-22 修回日期:2019-10-02 出版日期:2019-10-31 发布日期:2019-11-07
  • 通讯作者: 范宏瑞 E-mail:chenym@sd-gold.com;fanhr@mail.iggcas.ac.cn
  • 作者简介:陈玉民(1962-),男,山东淄博人,研究员,从事地质与采矿工程研究工作。chenym@sd-gold.com
  • 基金资助:
    国家自然科学基金项目“胶西北巨量金堆积成矿系统时空结构与演化”(41672094)

Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula

Yumin CHEN1(),Huafeng ZHANG2,Congying ZHANG2,Huanlong HU3,Zhaokun WANG1,Qingdong ZENG3,Hongrui FAN3()   

  1. 1. Shandong Gold Group Co. , Ltd. ,Jinan 250014,Shandong,China
    2. China University of Geosciences(Beijing),Beijing 100083,China
    3. Key Laboratory of Mineral Resources,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
  • Received:2019-08-22 Revised:2019-10-02 Online:2019-10-31 Published:2019-11-07
  • Contact: Hongrui FAN E-mail:chenym@sd-gold.com;fanhr@mail.iggcas.ac.cn

摘要:

黄铁矿成因矿物学研究能够为深部成矿潜力评价提供重要信息。三山岛金矿超深钻孔(ZK96-6,2 735.70 m)揭露该矿床的矿化现象沿着三山岛断裂仍然可以延伸到深部(-2 613~-2 684 m)。为此,针对三山岛金矿深部钻孔岩芯矿化体(-2 613~-2 684 m)开展了黄铁矿成因矿物学研究,以探讨深部黄铁矿标型特征及其对深部成矿的指示意义。对不同阶段黄铁矿的形态标型进行细致观察,利用电子探针和等离子质谱仪对其进行主量和微量元素分析,利用热电仪对其进行热电性分析。研究结果表明:深部矿化体中石英—黄铁矿阶段脉体中的黄铁矿粒度相比其他阶段的黄铁矿更加粗大,指示成矿流体沉淀黄铁矿时处于强过饱和条件,成矿流体中的还原性硫在形成黄铁矿的过程中大量消耗并导致金硫络合物失稳而沉淀。深部金矿体(-2 613~-2 684 m)黄铁矿微量元素含量在(Au+Bi+Cu+Pb+Zn)-(As+Sb+Ba+Ag+Hg)-(Ti+Cr+Co+Ni)三角投图中的位置指示该处矿体属于矿化中部,暗示深部仍有矿化潜力。黄铁矿热电性分析结果显示,P型黄铁矿出现率(P%)与金品位呈正相关关系,指示金和P型黄铁矿共生,该特征可作为深部金矿找矿的依据,同时也暗示着三山岛金矿的深部仍有巨大的找矿潜力。

关键词: 黄铁矿标型, 黄铁矿微量元素, 黄铁矿热电性, 深部金矿体, 三山岛金矿, 胶东半岛

Abstract:

The study of genetic mineralogy of pyrite could provide the important information for the estimation of deep mineralization potential.The deep drilling (ZK96-6,2 735.70 m) at the Sanshandao gold deposit uncovered that the mineralization could still extend to the depth (-2 613 m to -2 684 m) along the Sanshandao fault zone.Therefore,this study will focus on the genetic mineralogy of pyrite from the deep drill of Sanshandao gold deposit (-2 613 m to -2 684 m),exploring the indicators of typomorphic characteristics of deep pyrite for the deep mineralization.The detailed observation was given to the geometry typomorphic characteristics of different stages of pyrites.The contents of the major and trace elements of different stages of pyrites were analyzed by electronic probe and ICP-MS,respectively.The thermoelectrometry apparatus was operated in order to explore the thermoelectric characters of all stages of pyrites.The pyrite of quartz-gold-pyrite stage in deep gold orebody shows larger grain size than pyrite in other stages, which indicates that ore-forming fluids in this stage attained the supersaturation condition and amounts of pyrite precipitated.A lot of reduced sulfur could be fixed into pyrite,which led to the destability of Au-S complexes and gold precipitation.Selected trace elements contents of pyrite in deep gold orebody (-2 613 m to -2 684 m) were drawn in the (Au+Bi+Cu+Pb+Zn)-(As+Sb+Ba+Ag+Hg)-(Ti+Cr+Co+Ni) triangle discrimination diagram,which indicates gold orebody in this location belongs to the middle part of the whole orebody and the depth still has the gold mineralization potential.The occurrence rate of P-type pyrite and the gold grade show positive correlation,which indicates that the coprecipitation of P-type pyrite and gold.This relationship could be used as the criterion for the deep prospecting of gold and also indicate the enormous potential of gold mineralization in the depth of Sanshandao gold deposit.

Key words: pyrite typomorphy, pyrite trace element, thermoelectric character of pyrite, deep gold orebody, Sanshandao gold deposit, Jiaodong Peninsula

中图分类号: 

  • P618.51

图1

胶东金矿区域地质图[11,12]1.第四系;2.早白垩世地层/火山岩;3.元古宙变质岩石;4.太古宙变质岩石;5.早白垩世花岗岩;6.早白垩世花岗闪长岩;7.晚侏罗世花岗岩类;8.晚三叠世花岗岩类;9.超高压变质岩;10.主要断裂;11.焦家式金矿,图例中3种符号由大到小依次代表特大型金矿、大型金矿、中小型金矿或金矿化点;12.玲珑式金矿,图例中3种符号由大到小依次代表大型金矿、中型金矿、小型金矿或金矿化点"

图2

三山岛金矿区地质图[13]1.第四系;2.太古代胶东群片麻岩;3.早白垩世郭家岭花岗闪长岩;4.晚侏罗世玲珑花岗岩;5.煌斑岩脉;6.绢英岩化碎裂岩;7. 绢英岩化花岗质碎裂岩;8. 绢英岩化花岗岩;9.矿体;10.黄铁矿—石英脉;11.容矿断裂;12.无矿断裂;13.勘探线及编号;14.钻孔及编号"

图3

三山岛金矿床96#勘探线剖面图[13]1.第四系;2.太古宙胶东群片麻岩;3.太古宙变辉长岩;4.早白垩世郭家岭花岗闪长岩;5.晚侏罗世玲珑花岗岩;6.混合岩;7.钾化花岗岩;8.绢英岩化花岗岩;9.矿体;10.断裂;11.地质边界;12.推测地质边界;13.钻孔及编号/海拔;14.钻孔深度"

图4

三山岛金矿床ZK96-6钻孔岩性分布及采样位置图1.断层;2.多金属硫化物;3.黄铁矿;4.石英;5.碳酸盐"

图5

三山岛金矿床ZK96-6钻孔不同成矿阶段岩芯及矿物显微观察(a1),(a2)黄铁绢英岩阶段;(b1),(b2)石英—黄铁矿脉阶段;(c1),(c2)多金属硫化物阶段;(d1),(d2)黄铁矿—碳酸盐阶段Py-黄铁矿;Qz-石英;Ser-绢云母;Cal-方解石"

表1

三山岛金矿ZK96-6钻孔不同成矿阶段黄铁矿特征"

成矿阶段矿石颜色发育程度黄铁矿分布状态共生矿物黄铁矿形态粒径大小/mmAu含量/(×10-6
黄铁绢英岩阶段灰白色强烈发育呈星点状、细脉状、角砾状、带状绢云母、黄铁矿立方体自形晶0.05~2.000.4~1.4
石英—金—黄铁矿阶段灰白色中等发育呈星点状、细脉状、角砾状、带状黄铁矿、石英椭圆他形晶、角砾状晶体、立方体自形晶0.02~3.001.3~18.0
石英—金—多金属硫化物阶段烟灰色发育碎裂状黄铁矿、方铅矿、硫铋铅矿碎裂状立方体0.01~0.201.8~3.4
黄铁矿—碳酸盐阶段白色发育黄铁矿较少,呈星点状碳酸盐、石英、少量黄铁矿立方体0.05~0.500.05~0.10

表2

ZK96-6钻孔黄铁矿电子探针分析结果"

样品编号元素含量
SeAsGeSPbBiMoFe
z2966-3-10.0020053.3050.0710.0170.05546.118
z2966-3-20.0180.014053.4400.17900.04745.613
z2966-7-100.028053.1310.16700.05845.994
z2966-7-200.056053.3500.13900.05146.361
z2966-7-300.010053 .7750.06500.06546.134
z2966-16-100.047053.5560.04000.05446.349
z2966-16-200.061052.5110.1370.0200.05446.674
z2966-28-100.088053.0670.1040.0540.04546.519
z2966-28-200.0210.02252.5400.00600.06646.681
z2966-28-300.034053.574000.06346.882
样品编号元素含量
CoAgZnCuNiAu总量
z2966-3-10.05400.01300.01099.645
z2966-3-20.048000.0080099.367
z2966-7-10.0490000.016099.443
z2966-7-20.09100000.048100.096
z2966-7-30.08100.011000100.141
z2966-16-10.0450.0220000100.113
z2966-16-20.0730.0080.0180.02000.01199.587
z2966-28-10.0640.01400.0150099.970
z2966-28-20.02600.046000.03399.441
z2966-28-30.08000.008000.0040.049100.694

表3

三山岛金矿ZK96-6钻孔黄铁矿微量元素分析结果"

样品编号元素含量
LiBeScVCrCoNiCuZnGaRbSrYNbMo
Z96-6-42.0100.2083.091.544.4011238.634.427.311.243.575.10.75814.703.750
Z96-6-90.7520.3213.062.091.8320.227.01513803.7314.344.81.751.050.729
Z96-6-110.3840.1326.092.450.1313.217.780.456.83.4814.044.21.241.030.141
Z96-6-140.2470.1140.771.143.4519.919.552.823.02.8410.225.32.861.060.468
Z96-6-180.4820.0221.600.711.9513.910.815628.61.795.9522.91.230.460.575
Z96-6-250.5910.0972.271.534.7238.613.426824.32.6511.457.52.021.150.306
样品编号元素含量
CdInSbCsBaLaCePrNdSmEuGdTbDyHo
Z96-6-40.0510.0141.420.363758.314.31.656.40.960.1960.750.0760.2430.031
Z96-6-91.000.4801.850.12351825.342.44.8619.03.160.7152.410.2490.6920.065
Z96-6-110.1250.0900.7290.08760421.836.24.0614.62.290.6161.660.1740.5300.052
Z96-6-140.0530.0280.7880.07595.128.847.75.1318.42.780.5542.110.2751.1800.161
Z96-6-180.090.0871.550.04619441.669.07.4126.33.740.8432.810.2700.7260.069
Z96-6-250.0620.0360.5720.08815641.368.27.0924.43.190.5602.500.2420.7620.096
样品编号元素含量
ErTmYbLuTaWReTlPbBiThUZrHf
Z96-6-40.0910.0090.0870.0070.6421.090.0080.3581 74258.31.780.545.250.183
Z96-6-90.1890.0180.1330.0180.0870.6890.0030.2345 3482033.941.989.470.368
Z96-6-110.1460.0120.0640.0070.2340.752<0.0020.12493675.93.251.766.310.339
Z96-6-140.3910.0440.2240.0230.0521.800.0070.093698569.7814.23.460.136
Z96-6-180.1810.0060.0550.0080.1540.3850.0070.05576372.12.380.262.440.089
Z96-6-250.2990.0260.1750.0170.1230.7610.0070.082463247.150.576.480.303

表4

ZK96-6钻孔黄铁矿热电性测试结果"

样品编号标高/mP型热电系数/(μV/°C)N型热电系数/(μV/°C)P型平均出现率/%粒数/粒金品位/(×10-6
范围平均范围平均
z2966-32 613.0430.6~42.336.35-207.2~-43.9-130.644502.61
z2966-42 626.9419.3~336.9197.50-173.6~-14.3-61.3782502.55
z2966-52 627.743.7~354.6184.05-101.8~-1.8-55.0278501.84
z2966-62 628.161.7~344.3214.70-64.2~-35.6-49.9096503.47
z2966-72 629.1615.9~353.5185.70-111.1~-5.3-69.9182505.56
z2966-82 629.4753.8~352.4221.36-10.9~-1.0-110.4384505.56
z2966-92 630.425.2~352.4173.42-182.5~-3.5-79.5376501.39
z2966-102 631.525.1~318.1164.12-182.0~-31.6-103.2958502.70
z2966-112 632.768.7~333.9201.48-116.6~-5.3-57.1680503.68
z2966-122 633.463.5~336.2148.90-144.6~-1.8-54.7682501.14
z2966-132 634.461.8~340.8116.74-289.0~-8.9-129.7158500.86
z2966-142 636.3654.8~294.1155.25-1.7~-9.6-77.2570501.22
z2966-152 637.161.7~328.2176.95-15.5~-285.2-75.9574502.94
z2966-162 638.9612.7~304.0134.74-12.6~-216.1-108.9566502.53
z2966-172 640.263.4~336.7146.48-10.4~-190.9-92.38725018.75
z2966-182 640.96134.9~344.5250.52-21.3~-198.2-112.01805018.75
z2966-192 641.6813.7~343.4181.30-46.2~-96.7-76.9290504.69
z2966-202 642.685.4~353.8201.10-3.6~-158.8-58.50885016.72
z2966-212 644.1017.7~348.4159.70-20.1~-153-63.9280501.35
z2966-222 644.9015.8~337.3175.74-238.9~-8.9-79.1680501.04
z2966-232 645.671.8~351.7190.63-231.5~-25.9-97.3182500.44
z2966-242 647.368.9~324.1201.18-339.8~-5.4-145.9024504.26
z2966-252 652.0530.7~358.4208.01-313.6~-59.1-163.3868500.63
z2966-262 676.5924.6~193.0109.40-244.8~-7.2-123.1724500.10
z2966-272 684.773.4~289.487.00-211.9~-15.9-101.6430500.05
平均值2 639.62174.83-78.5068504.19

图6

黄铁矿微量元素含量(Au+Bi+Cu+Pb+Zn)-(As+Sb+Ba+Ag+Hg)-(Ti+Cr+Co+Ni)指示矿体部位判别图[6]"

图7

三山岛金矿ZK96-6钻孔黄铁矿Y/Ho比值与相关储库端元对比图"

图8

ZK96-6钻孔黄铁矿P型出现率与金品位关系"

1 Large RossR,DanyushevskyL,HollitC,et al. Gold and trace element zonation in pyrite using a laser imaging technique:Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits [J].Economic Geology,2009,104(5):635-668.
2 高振敏,杨竹森,李红阳,等.黄铁矿载金的原因和特征[J].高校地质学报,2000,6(2):156-162.
GaoZhenmin,YangZhusen,LiHongyang,et al.Genesis and characteristics of gold hosted by pyrite[J].Geological Journal of China Universities,2000,6(2):156-162.
3 李洪梁,李光明.不同类型热液金矿床主成矿期黄铁矿成分标型特征[J].地学前缘,2019,26(3):202-210.
LiHongliang,LiGuangming.Compositional characteristics of pyrite ore formed in the main metallogenic period of various types of hydrothermal gold deposits[J].Earth Science Frontiers,2019,26(3):202-210.
4 祝洪臣,王海坡,张炯飞.内蒙古苏尼特左旗两种不同成因类型金矿[J].吉林大学学报 (地球科学版),2006,36(5):759-766.
ZhuHongchen,WangHaipo,ZhangJiongfei. Two genetic types of gold deposits in Sonid Zuoqi,Inner Mongolia[J].Journal of Jilin University(Earth Science Edition),2006,36(5):759-766.
5 江永宏,李胜荣,王吉中.云南墨江金厂金矿床黄铁矿标型特征研究[J].矿物岩石,2003,23(2):22-26.
JiangYonghong,LiShengrong,WangJizhong. The typomorphism of pyrite of Jinchang gold deposit in Mojiang County Yunnan Province[J]. Journal of Mineralogy and Petrology,2003,23(2):22-26.
6 严育通,张娜,李胜荣,等.胶东各类型金矿床黄铁矿化学成分标型特征[J].地学前缘,2013,20(3):88-93.
YanYutong,ZhangNa,LiShengrong,et al.Compositional typomorphic characteristics of pyrite in each type of gold deposit of Jiaodong[J].Earth Science Frontiers,2013,20(3):88-93.
7 申俊峰,李胜荣,马广钢,等.玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J].地学前缘,2013,20(3):55-75.
ShenJunfeng,LiShengrong,MaGuanggang,et al.Typomorphic characteristics of pyrite from the Linglong gold deposit:Its vertical variation and prospecting significance[J]. Earth Science Frontiers,2013,20(3):55-75.
8 FengK,FanH R,HuF F,et al. Involvement of anomalously As-Au-rich fluids in the mineralization of the Heilangou gold deposit,Jiaodong,China:Evidence from trace element mapping and in-situ sulfur isotope composition[J].Journal of Asian Earth Sciences,2018,160:304-321.
9 LiX H,FanH R,YangK F,et al. Pyrite textures and compositions from the Zhuangzi Au deposit,southeastern North China Craton:Implication for ore-forming processes [J]. Contributions to Mineralogy and Petrology,2018,173:73.
10 YangK F,FanH R,SantoshM,et al.Reactivation of the Archean lower crust:Implications for zircon geochronology,elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton [J]. Lithos,2012,146/147:112-127.
11 范宏瑞,胡芳芳,杨进辉,等.胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J].岩石学报,2005,21(5):1317-1328.
FanHongrui,HuFangfang,YangJinhui,et al. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong Province[J]. Acta Petrologica Sinica,2005,21(5):1317-1328.
12 胡换龙,范宏瑞.水/岩相互作用对焦家金矿金成色的影响[J].黄金科学技术,2018,26(5):559-569.
HuHuanlong,FanHongrui.The effect of water/rock interaction for the gold fineness of Jiaojia gold deposit[J].Gold Science and Technology,2018,26(5):559-569.
13 WenB J,FanH R,HuF F,et al. Fluid evolution and ore genesis of the giant Sanshandao gold deposit,Jiaodong gold province,China:Constrains from geology,fluid inclusions and H-O-S-He-Ar isotopic compositions[J]. Journal of Geochemical Exploration,2016,171:96-112.
14 FanH R,ZhaiM G,XieY H,et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China[J]. Mineralium Deposita,2003,38:739-750.
15 LiX C,FanH R,SantoshM,et al. Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China [J]. Ore Geology Reviews,2013,53:403-421.
16 陈光远,孙岱生,张立,等.黄铁矿成因形态学[J].现代地质,1987,1(1):60-76.
ChenGuangyuan,SunDaisheng,ZhangLi,et al.Morphogenesis of pyrite[J].Geoscience,1987,1(1):60-76.
17 李楠,杨立强,张闯,等.西秦岭阳山金矿带硫同位素特征:成矿环境与物质来源约束[J].岩石学报,2012,28(5):1577-1587.
LiNan,YangLiqiang,ZhangChuang,et al.Sulfur isotope characteristics of the Yangshan gold belt,west Qinling:Constraints on ore-forming environment and material source[J].Acta Petrologica Sinica,2012,28(5):1577-1587.
18 Mikucki EdwardJ. Hydrothermal transport and depositional processes in Archean lode-gold systems:A review [J]. Ore Geology Reviews,1998,13(1/2/3/4/5):307-321.
19 肖化云,吴学益.高温高压高应变速率干体系中黄铁矿内的晶格金的动力迁移机制理论探讨[J].地质地球化学,1999,27(2):114-119.
XiaoHuayun,WuXueyi. Dynamic transport mechanisim of lattice gold in pyrite at high temperature-high pressure anhydrous conditions and at high stain rate[J].Geology-Geochemistry,1999,27(2):114-119.
20 迟清华,鄢明才.应用地球化学元素丰度数据手册[M].北京:地质出版,2007:8-114.
ChiQinghua,YanMingcai. The Data Handbook of Chemical Elements Abundance of Applied Geochemistry [M]. Beingjing:Geological Publishing House,2007:8-114.
[1] 曹家源,马凤山,郭捷,张国栋,李兆平. 海底倾斜矿体开采沉陷预测研究[J]. 黄金科学技术, 2019, 27(4): 522-529.
[2] 李威,马凤山,卢湘鹏,曹家源,郭捷. 基于三维地震探测的海底矿区地质结构分析[J]. 黄金科学技术, 2019, 27(4): 530-538.
[3] 段学良,马凤山,赵海军,郭捷,顾鸿宇,刘帅奇. 滨海矿山矿坑涌水源识别与混合比研究[J]. 黄金科学技术, 2019, 27(3): 406-416.
[4] 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例[J]. 黄金科学技术, 2019, 27(2): 207-215.
[5] 马凤山,李克蓬,杜云龙,侯成录,李威,张国栋 . 三山岛金矿海底开采F1断裂防突结构可能的破坏形式分析 [J]. 黄金科学技术, 2017, 25(5): 47-56.
[6] 马凤山,郭捷,李克蓬,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与顶板岩层的变形监测研究[J]. 黄金科学技术, 2016, 24(4): 66-72.
[7] 李克蓬,马凤山,郭捷,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J]. 黄金科学技术, 2016, 24(4): 73-80.
[8] 吴若菡,贾万玉,刘国栋. 三山岛金矿溜矿系统防尘措施探讨[J]. 黄金科学技术, 2015, 23(3): 73-76.
[9] 赵龙,吴昌晓,孙铭骏,王楠. 三山岛金矿深井充填系统影响因素分析及优化[J]. 黄金科学技术, 2014, 22(6): 46-49.
[10] 赵龙,王楠,孙铭骏. 盘区充填采矿法二步采转层优化在三山岛金矿的应用[J]. 黄金科学技术, 2013, 21(6): 73-77.
[11] 王振军,李伟明,原波. 山东三山岛—新立—仓上金矿床构造叠加晕特征浅析[J]. 黄金科学技术, 2013, 21(4): 48-53.
[12] 丁剑锋,刘丰韬,陈国平,王芳,陈兵宇,武志明,王莉,王京生. 化学注浆技术在三山岛金矿的研究与应用[J]. J4, 2012, 20(4): 54-57.
[13] 刘福江,王元魁,王振军,魏开林,武志明. 提高多节理裂隙矿岩爆破质量的探讨[J]. J4, 2012, 20(2): 71-73.
[14] 王成钊,宋立昌,战澍楷,薛汝和,王智业,原英君. 山东三山岛金矿IH100-65-315/75kW水泵的技术改造[J]. J4, 2012, 20(1): 86-88.
[15] 赵景博,杜飞. 多井提升平行作业在井巷工程施工中的应用[J]. J4, 2011, 19(6): 55-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[3] 陈力子, 曹东宏, 杨登美. 陕西金龙山金矿古楼山矿段元素地球化学特征[J]. J4, 2011, 19(1): 28 -33 .
[4] 白复锌, 王善功, 安智海. 地下矿山开采三维可视化系统在鑫汇金矿的应用[J]. J4, 2011, 19(1): 55 -57 .
[5] 赵海,崔学武,徐伦先. 吉林汪清九三沟金矿床地质及同位素特征探讨[J]. J4, 2008, 16(1): 48 -51 .
[6] 张华全,张维昕,李洪杰. 山东胶莱盆地金矿成矿条件及找矿方向[J]. J4, 2008, 16(2): 12 -17 .
[7] 汤鹏飞,公维国,杨吉波. 黑龙江省塔河县宝兴沟金矿地质特征及找矿方向探讨[J]. J4, 2008, 16(3): 34 -36 .
[8] 闫文强,杨凤喜. 试论一撮毛岩体对五道岭钼矿的成矿作用[J]. J4, 2008, 16(3): 37 -39 .
[9] 杨宝荣, 杨小斌. 青海都兰果洛龙洼金矿床地质特征及控矿因素浅析[J]. J4, 2007, 15(1): 26 -30 .
[10] 向玉莲. 铜精矿中低量银的原子吸收光谱法测定[J]. J4, 2008, 16(3): 60 -62 .