img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2017, Vol. 25 ›› Issue (5): 47-56.doi: 10.11872/j.issn.1005-2518.2017.05.047

• 采选技术与矿山管理 • 上一篇    下一篇

三山岛金矿海底开采F1断裂防突结构可能的破坏形式分析 

马凤山1,李克蓬1,杜云龙 2,侯成录 2,李威 2,张国栋 2   

  1. 1.中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京    100029;
    2.山东黄金矿业(莱州)有限公司三山岛金矿,山东  莱州    261442
  • 收稿日期:2017-07-10 修回日期:2017-08-26 出版日期:2017-10-30 发布日期:2018-02-12
  • 作者简介:马凤山(1964-),男,河北吴桥人,研究员,博士生导师,从事地质工程与地质灾害方面的研究工作。fsma@mail.iggcas.ac.cn
  • 基金资助:

    国家自然科学基金面上项目“陡倾矿体充填开采岩移规律与充填体稳定性研究”(编号:41372323)资助

Analysis on the Possible Failure Modes of Water Burst Prevention Structures of F1 Fault Caused by Undersea Mining in Sanshandao Gold Mine

MA Fengshan1,LI Kepeng1,DU Yunlong2,HOU Chenglu2,LI Wei2 ,ZHANG Guodong2   

  1. 1.Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing    100029,China;
    2.Sanshandao Gold Mine,Shandong Gold Mining(Laizhou) Co.,Ltd.,Laizhou    261442,Shandong,China
  • Received:2017-07-10 Revised:2017-08-26 Online:2017-10-30 Published:2018-02-12

摘要:

不同矿山具有不同的突水形式和突水机制,对于完全位于海底之下的三山岛金矿新立海底矿区,其水文地质条件、围岩力学属性、矿体形态及其与断层的相对位置决定了其突水机制不同于其他矿山尤其是煤矿常见的突水机制。新立矿区防突结构可能的破坏形式与矿体顶部第四系黏土隔水层以及F1断裂带断层泥隔水带紧密相关,顶板隔离层破断突水和F1的滑动突水是目前可能的突水模式。针对海底矿床开采特有的水文地质结构,在阐明防突结构本质属性的基础上,采用数值模拟手段,分析了不同开采工况下F1断裂防突结构可能的破坏形式。模拟结果表明,当开采规模不大时,F1断层滑动范围仅局限在采空区附近,对顶板隔离层部位F1不会产生影响;但随着海底开采规模的扩大,顶板隔离层部位的F1最终会产生滑动。

关键词: 三山岛金矿, 海底开采, F1控矿断裂, 防突结构, 数值模拟, 破坏形式

Abstract:

Different mines generally have different water-inrush forms and mechanisms.Xinli mining area locates under sea floor,of Sanshandao gold mine.Some factors,such as hydrogeological condition,surrounding rock mechanics properties,orebody morphology,and the relative position to default decided water inrush mechanism which is different from that of other mines especially coal mine.The possible failure modes of seawater burst prevention structures are closely associated with the Quaternary clay aquiclude on top of orebody and the fault gouge aquiclude of F1.So the isolation layer breaking and the fault slipping of  F1 now are the possible water-inrush modes of Xinli mining area.Based on illuminating the essential attributes of the water burst prevention structures,and combined with proper hydrogeological structures of the Xinli seabed mine exploitation.Analysis of the possible failure modes of F1 in different working conditions were carried out by numerical simulation,The simulation results showed that when the mining scale of Xinli orebody was small,the slip range of  F1 was limited in the scope near the mined area and had no effect on the section of F1 where penetrating the reserved isolation layer.But with the increase of mining scale,F1  near the isolation layer would terminally slide.

Key words: Sanshandao gold mine, undersea mining, F1 ore-controlling fault, water burst prevention structure, numerical simulation, failure mode

中图分类号: 

  • TD807

[1] Yang Tianhong,Tang Chunan,Tan Zhihong,et al.State of the art of inrush models in rock mass failure and developing trend for prediction and forecast of groundwater inrush[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(2):268-277.[杨天鸿,唐春安,谭志宏,等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.]
[2] Li Liping,Lu Wei,Li Shucai,et al.Research status and developing trend analysis of the water inrush mechanism for underground engineering construction[J].Journal of Shandong University(Engineering Science),2010,40(3):104-112.[李利平,路为,李术才,等.地下工程突水机理及其研究最新进展[J].山东大学学报(工学版),2010,40(3):104- 112.]
[3] Wu Hao,Zhao Guoyan,Feng Shaowei,et al.Design on the size of waterproof pillar(rock) in subsea bedrock mining[J].The Chinese Journal of Geological Hazard and Control,2014,25(1):44-50.[吴浩,赵国彦,冯少维,等.滨海基岩矿床开采防水矿岩柱高度的确定[J].中国地质灾害与防治学报,2014,25(1):44-50.]
[4] Li Kepeng,Ma Fengshan,Guo Jie,et al.Numerical simulation of mine backfill and surrounding rock deformation when exploiting Sanshandao seabed gold mine[J].Gold Science and Technology,2016,24(4):73-80.[李克蓬,马凤山,郭捷,等.三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J].黄金科学技术,2016,24(4):73-80.]
[5] Cao Zhiwei,Zhai Juecheng.Rock Movement of “Three Under Mining”[M].Beijing:China Coal Industry Publishing House,1986.[曹志伟,翟厥成.岩层移动与“三下”采煤[M].北京:煤炭工业出版社,1986.]
[6] Li Xiaozhao,Zhang Guoyong,Luo Guoyi.Barrier effects cau-sed by fault on excavating-induced stress & deformation and mechanism of resulting groundwater inrush[J].Rock and Soil Mechanics,2003,24(2):220-224.[李晓昭,张国永,罗国熠.地下工程中由控稳到控水的断裂屏障机制[J].岩土力学,2003,24(2):220-224.]
[7] Sainoki A,Mitri H S.Dynamic modelling of fault-slip with Barton’s shear strength model[J].International Journal of Rock Mechanics and Mining Sciences,2014,67:155-163.
[8] Castro L A M,Carter T G,Lightfoot N.Investigating factors influencing fault-slip in seismically active structures[C].ROCKENG09:Proceedings of the 3rd CANUS Rock Mechanics Symposium,2009:4019.
[9] Li Xiaozhao,Luo Guoyi,Chen Zhongsheng.The mechanism of deformation and water conduction of fault due to excavation in water inrush in underground engineering[J].Chinese Journal of Geotechnical Engineering,2002,24(6):695-700.[李晓昭,罗国熠,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002,24(6): 695-700.]
[10] Guo Zhi.The mechanical characteristics of mine-controlled fault F1 on Sanshandao gold mine and reinforcement measures[J].Journal of Engineering Geology,1994,2(4):23-30.[郭志.三山岛金矿控矿断层F1的力学性质及补强措施[J].工程地质学报,1994,2(4):23-30.]
[11] Li Zhihua,Dou Linming,Lu Zhenyu,et al.Study of the fault slide destabilization induced by coal mining[J].Journal of Mining & Safety Engineering,2010,27(3):499-504.[李志华,窦林名,陆振欲,等.采动诱发断层滑移失稳的研究[J].采矿与安全工程学报,2010,27(3):499-504.]
[12] Li Xibing,Liu Zhixiang,Peng Kang,et al.Theory and practice of rock mechanics related to the exploitation of undersea metal mine[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):1945-1953.[李夕兵,刘志祥,彭康,等.金属矿滨海基岩开采岩石力学理论与实践[J].岩石力学与工程学报,2010,29(10):1945-1953.]

[1] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[2] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[3] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[4] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[5] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[6] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[7] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[8] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[9] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[10] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[11] 海龙, 鲍荣涛, 谭世林, 房祥龙. 分层尾砂胶结充填体力学特性及优化试验研究[J]. 黄金科学技术, 2023, 31(5): 763-772.
[12] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[13] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[14] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[15] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!