img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (2): 207-215.doi: 10.11872/j.issn.1005-2518.2019.02.207

• 采选技术与矿山管理 • 上一篇    下一篇

多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例

刘国伟1,2,3(),马凤山1,2(),郭捷1,2,杜云龙4,侯成录4,李威4   

  1. 1. 中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    2. 中国科学院地球科学研究院,北京 100029
    3. 中国科学院大学,北京 100049
    4. 山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
  • 收稿日期:2018-07-31 修回日期:2018-11-01 出版日期:2019-04-30 发布日期:2019-04-30
  • 通讯作者: 马凤山 E-mail:l1014893489@163.com;fsma@mail.iggcas.ac.cn
  • 作者简介:刘国伟(1991-),男,山东菏泽人,博士研究生,从事矿山水文地质、工程地质研究工作。l1014893489@163.com|马凤山(1964-),男,河北吴桥人,研究员,博士生导师,从事地质工程与地质灾害研究工作。fsma@mail.iggcas.ac.cn
  • 基金资助:
    国家重点研发计划项目“黄渤海不同类型海岸带海水入侵发生机理研究”(编号:2016YFC0402802)和国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(编号:41831293)

Application of Multivariate Statistical Analysis to Identify Water Source in Coast Mine Area:As Example of Sanshandao Gold Mine

Guowei LIU1,2,3(),Fengshan MA1,2(),Jie GUO1,2,Yunlong DU4,Chenglu HOU4,Wei LI4   

  1. 1. Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
    2. Institutions of Earth Science,Chinese Academy of Sciences,Beijing 100029,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
    4. Sanshandao Gold Mine,Shandong Gold Mining(Laizhou)Co. ,Ltd. ,Laizhou 261442,Shandong,China
  • Received:2018-07-31 Revised:2018-11-01 Online:2019-04-30 Published:2019-04-30
  • Contact: Fengshan MA E-mail:l1014893489@163.com;fsma@mail.iggcas.ac.cn

摘要:

海底矿山突水是矿山开采亟待解决的问题,通过对矿山巷道水的研究,能够划分出矿山突水水源类型,进而对突水可能性作出预测。以山东三山岛金矿西山矿区地下水系统为例,对其31个水样的水化学资料进行多元统计分析研究。利用因子分析法对存在相关关系的变量进行空间降维处理,找出能够反映大于90%水样水化学信息的公共正交因子,以其作为系统聚类变量。运用系统聚类并结合实际地下水性质,将研究区地下水划分为典型的2类,然后建立矿区水源的Bayes线性模型,并对其进行验证。通过因子分析法和系统聚类分析法得出,-375 m中段涌水水源划分为2种类型,并得出2种具体的判别函数。结果表明:多元统计方法判别水源具有快速、准确且经济的特点。

关键词: 三山岛金矿, 矿山突水, 因子分析, 系统聚类分析, Bayes线性模型, 水源判别

Abstract:

Xishan gold mine is subordinate to the Sanshandao gold mine and located in the coastal area of Laizhou Bay,Laizhou City,Shandong Province.In terms of geotectonic,it is located in the western part of the second up-warping zone of the Neocathaysian structural system,which is also Sanshandao-Cangshang fracture of the eastern side of Yishu deep facture.Xishan gold mine has been exploited in under the Bohai sea.Submarine mine water inrush has become an urgent problem to be solved in mine mining.The research on subway water can classify the types of mine groundwater and then predict the possibility of water inrush.Taking groundwater system of Sanshandao gold mine for example,hydrochemical data of 31 water samples was chosen to study with multivariate statistical analysis methods.By using factor analysis,it can reduce the spatial dimension of many variables with correlation relationship,and then identify principle factors which represent over ninety percent information of hydrochemical data.Hierarchical clustering analysis(HCA)uses these principle factors as clustering variables.HCA combined with actual groundwater quality divided the studied groundwater into 2 classic groups,then established and validated Fisher identification model.Through FA and HCA,the groundwater of -375 m subway were divided into two types which all have a specific discriminant function could determine which type of water is.The results represent that the water samples were divided into two typical M1 and M2 by factor analysis combined with principle component analysis.Among the 31 water samples,three of them were discriminated wrong,and the correct rate of discriminant reached 90.3%.Stepwise discriminant analysis and factor analysis were combined to process the seven conventional ions data.Bayes linear discriminant function and function values from 1740 exploration line to 2740 exploration line in -375 m sublevel was obtained.Bayes linear function discriminant results are completely consistent with the results of the factor analysis method,and the two selected discriminant water samples also agree.The consistency of the discriminant results shows that the factor analysis method and the stepwise analysis method are mutually verified.A multivariate statistical method was combined to obtain a quantitative Bayes linear discriminant function,which was applied to the recognition of the source type in the mining area.It was only necessary to know the ion concentration of the corresponding variable,and the water sample type could be determined by substituting it.This method has the characters of accurate,fast,and economical.

Key words: Sanshandao gold mine, mine water inrush, factor analysis, systematic cluster analysis, Bayes linear model, discriminate of water sources

中图分类号: 

  • TD745

图1

区域地质构造图"

图2

研究区地质简图"

图3

水样采集位置图"

表1

-375 m中段水样水化学参数"

水样位置K+/(mg·L-1Na+/(mg·L-1Ca2+/(mg·L-1Mg2+ /(mg·L-1Cl-/(mg·L-1SO42-/(mg·L-1HCO3-/(mg·L-1pH值(标准值)EC/(μs·cm-1TDS/(mg·L-1
375-1-1248.410 400761.51 287.919 8522 305.4219.67.1944 90035 074.8
375-1-21979 750801.61 222.318453.52 334.3233.77.7439 60032 995
375-1-320510 031.2849.71 239.318 916.12 497.6244.67.0742 30033 991.5
375-1-4190.29 800841.71 21519 224.5624.4250.77.3142 10032 147.5
375-1-5179.79 875721.41 166.418 402.12 372.7253.27.3440 00032 974.6
375-2-128610 650697.41 312.219 8522 286.2207.47.0345 20035 292.8
375-3-1299.29 445537.11 132.417 583.22 017.3219.67.3640 80031 233.8
375-3-22418 900681.41 04016 705.82 190.2233.77.5637 00029 992.1
375-3-3275.89 200753.51 069.217 579.72 286.2273.37.4539 80031 437.9
375-4-1316.89 825641.31 044.917 583.22 017.3201.37.4941 10031 629.8
375-4-22588 900921.8945.317 014.22 295.8181.27.4637 20030 516.3
375-4-3282.59 7251 122.21 001.218 607.72 516.8170.87.1141 80033 433.8
375-4-4285.59 9001 314.6831.118 710.52 401.5168.47.3240 80033 614.5
375-4-5285.110 0001 154.3916.118 874.32 401.5170.87.0340 90033 821.3
375-5-126012 0501 146.31 020.621 9792 459.1119.67.2950 40039 052.7
375-5-220810 886.21 52397220 8182 545.6114.17.4142 50037 081.6
375-5-319510 9001 595.2957.419 738.62 708.91087.0545 80036 216.5
375-5-4226.511 2501 643.3823.821 280.62 603.285.47.3244 70037 916.2
375-5-5252.511 50011 500517.621 471.72 353.581.87.0344 70038 156.3
375-6-1337.511 4502 084.2777.622 156.32 497.6107.47.0249 70039 411.6
375-6-226211 8192 276.5726.622 411.52 4881087.0644 40040 117.1
375-6-3257.89 062.55051 142.117 560.52 315236.17.6434 50031 080.1
375-7-130510 7001 723.4923.421 2702 363.1134.27.1748 10037 424.9
375-7-22519 562.55211 154.317 642.42 353.5225.77.1639 30031 716.5
375-7-3265.69 187.54811 161.517 731.72 238.22307.6634 40031 296.2
375-8-1290.410 3501 0261 078.918 965.71 729.1158.67.344 10033 598.7
375-8-229410 937.52 312.6626.921 794.72 257.4102.57.6643 90038 344.7
375-8-3198.110 438721.41 287.919 597.12 401.5233.77.2243 00034 884
375-8-4281.39 062.55211 154.317 389.32 353.52307.5435 00030 992.4
375-9-120510 375681.41 268.518 9192 449.5256.27.6342 50034 154.6
375-9-2262.59 2505211 154.317 731.72 343.9222.77.5734 90031 486.7

表2

变量相关系数矩阵"

K+Na+Ca2+Mg2+Cl-SO42-CHO-pHECTDS
K+1.0000.0100.194-0.3660.0650.037-0.270-0.1050.1120.065
Na+0.0101.0000.763-0.4960.9560.260-0.766-0.5220.8780.969
Ca2+0.1940.7631.000-0.8600.8420.254-0.880-0.3980.6400.854
Mg2+-0.366-0.496-0.8601.000-0.555-0.2370.8290.235-0.334-0.576
Cl-0.0650.9560.842-0.5551.0000.209-0.777-0.4700.8350.987
SO42-0.0370.2600.254-0.2370.2091.000-0.328-0.1520.1170.345
CHO--0.270-0.766-0.8800.829-0.777-0.3281.0000.404-0.621-0.805
pH-0.105-0.522-0.3980.235-0.470-0.1520.4041.000-0.624-0.495
EC0.1120.8780.640-0.3340.8350.117-0.621-0.6241.0000.839
TDS0.0650.9690.854-0.5760.9870.345-0.805-0.4950.8391.000

表3

总方差解释"

主成分特征值特征值
方差方差/%累计方差/%方差方差/%累计方差/%
16.04860.47660.4766.04860.47660.476
21.33113.31173.7871.33160.47673.787
30.9729.71583.5020.9729.71583.502
40.8298.29091.7920.8298.29091.792
50.5005.00396.794
60.1371.37098.164
70.1101.09999.263
80.0590.59199.854
90.0150.146100.000
100.0000020.000018100.000

表4

因子载荷矩阵"

变量因子载荷旋转因子载荷方差HI2
F1F2F3F4F11F21F31F41
K+0.195-0.712-0.4510.3930.1360.055-0.938-0.0110.90
Na+0.9330.2720.014-0.0490.6950.6520.1780.0830.95
Ca2+0.918-0.2120.030-0.2130.9150.282-0.1000.0860.93
Mg2+-0.7220.575-0.0320.213-0.8690.0330.359-0.1170.90
Cl-0.9450.185-0.024-0.1360.7700.5780.1350.0220.95
SO42-0.330-0.1660.7940.4730.1700.0760.0060.9770.99

CHO-

pH

-0.9000.273-0.0590.096-0.865-0.2890.185-0.1790.90
-0.575-0.2970.264-0.557-0.071-0.8610.195-0.1200.80
EC0.8370.353-0.2350.1300.4780.8150.044-0.0520.90
TDS0.9660.1610.084-0.0530.7650.5830.1270.1610.97

表5

因子得分系数矩阵"

变量主成分得分系数
F1F2F3F4
K+0.195-0.712-0.4510.393
Na+0.9330.2720.014-0.049
Ca2+0.918-0.2120.030-0.213
Mg2+-0.7220.575-0.0320.213
Cl-0.9450.185-0.024-0.136
SO42-0.330-0.1660.7940.473
CHO--0.9000.273-0.0590.096
pH-0.575-0.2970.264-0.557
EC0.8370.353-0.2350.130
TDS0.9660.1610.084-0.053

表6

水样因子得分矩阵"

水样位置因子得分
F1F2F3F4
375-1-10.1451.681-0.2990.707
375-1-2-4.6600.7811.220-1.139
375-1-3-1.5361.9690.5660.858
375-1-4-4.6602.575-3.173-2.340
375-1-5-3.6391.5950.991-0.270
375-2-11.1801.388-0.9401.441
375-3-1-4.223-0.812-1.1280.426
375-3-2-6.907-1.0240.311-0.483
375-3-3-5.205-0.758-0.1560.309
375-4-1-3.236-1.471-1.1330.118
375-4-2-4.830-1.6970.311-0.176
375-4-30.083-0.688-0.0631.154
375-4-40.297-1.496-0.0080.251
375-4-50.903-0.763-0.3631.059
375-5-18.1111.430-0.0230.119
375-5-23.9540.6561.285-0.716
375-5-34.9351.3221.1780.440
375-5-46.7170.2521.057-0.463
375-5-513.600-1.5550.094-1.265
375-6-110.150-0.631-0.9991.186
375-6-29.6440.1870.1850.061
375-6-3-6.903-1.1620.638-0.402
375-7-16.120-0.197-0.7850.665
375-7-2-3.7980.163-0.0050.873
375-7-3-6.697-1.1970.421-0.492
375-8-10.153-0.098-1.786-0.198
375-8-26.550-1.8470.027-1.430
375-8-3-0.8642.3460.5890.270
375-8-4-6.468-1.4290.3250.153
375-9-1-2.9161.5401.098-0.542
375-9-2-5.999-1.0600.569-0.175

图4

系统聚类谱系图"

表7

水样类型的判别"

点号Bayes函数值
M1M2类型

375-1-1

375-1-3

375-1-4

375-1-5

375-2-1

375-3-1

375-3-2

375-3-3

375-4-1

375-4-2

375-4-3

375-4-5

375-5-1

242.5498

237.3542

230.8616

234.4816

247.6762

207.2148

191.8156

216.3004

215.0894

174.0706

201.0804

211.2554

269.7998

230.4202

219.9806

211.5024

215.1574

238.4558

190.3102

170.2684

190.8676

202.5736

159.6634

192.2126

203.7626

279.5202

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M2

375-5-2

375-5-3

375-5-4

375-5-5

375-6-1

375-6-2

375-7-2

375-7-3

375-8-1

375-8-3

375-8-4

375-9-1

375-9-2

224.8802

223.3290

228.6402

236.6734

243.4762

257.3320

213.6241

201.2025

220.0818

248.7216

196.5775

253.9956

201.0476

229.5296

228.8770

239.0118

248.7846

251.8558

267.4750

196.4774

181.5960

215.9982

234.8644

176.3460

236.7634

182.7464

M2

M2

M2

M2

M2

M2

M1

M1

M1

M1

M1

M1

M1

检测水点Bayes函数值
M1M2类型
375-1-2223.2656205.9684M1
375-4-4206.7442199.0778M1
1 ChristophersenN,HooperR P.Multivariate analysis of stream water chemical data:The use of principal components analysis for the end‐member mixing problem[J]. Water Resources Research,1992,28(1):99-107.
2 LaaksoharjuM,SkårmanC,SkårmanE.Multivariate mixing and mass balance (M3) calculations,a new tool for decoding hydrogeochemical information[J].Applied Geochemistry,1999,14(7):861-871.
3 DoctorD H,AlexanderE C,PetričM,et al.Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers[J]. Hydrogeology Journal,2006,14(7):1171-1191.
4 CarreraJ,Vázquez-SuñéE,CastilloO,et al.A methodology to compute mixing ratios with uncertain end‐members[J].Water Resources Research,2004,40(12):3687-3696.
5 GülerC,ThyneG D.Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c‐means clustering[J].Water Resources Research,2004,40(12):87.
6 LongA J,ValderJ F.Multivariate analyses with end-member mixing to characterize groundwater flow:Wind Cave and associated aquifers[J].Journal of Hydrology,2011,409(1/2):315-327.
7 刘杰刚,徐新启,时艳茹,等.多元统计分析模型在矿井突水水源判别中的应用[J].中国煤炭,2013,39(2):101-104.
LiuJiegang,XuXinqi,ShiYanru,et al. Application of multivariate statistical model to identification of water inrush source in coal mines[J].China Coal,2013,39(2):101-104.
8 李克蓬,马凤山,张洪训,等.海底金矿矿坑涌水水源判识及演化研究[J].工程地质学报,2017,25(1):180-189.
LiKepeng,MaFengshan,ZhangHongxun,et al.Recharge source identification and evolution of inflowing water in a seabed gold mine[J].Journal of Engineering Geology,2017,25(1):180-189.
9 张好,姚多喜,鲁海峰,等.主成分分析与Bayes判别法在突水水源判别中的应用[J].煤田地质与勘探,2017,45(5):87-93.
ZhangHao,YaoDuoxi,LuHaifeng,et al.Application of principal component analysis and Bayes discrimination approach in water source identification[J].Journal of Coal Geology and Exploration,2017,45(5):87-93.
10 刘春平,郑长城,谭红军.矿坑涌水量的地质分析与模拟——以三山岛金矿为例[J].工程地质学报,1994,2(3):81-90.
LiuChunping,ZhengChangcheng,TanHongjun.The geological analysis and modeling of mining water flow—as an example of Sanshan island gold mine[J].Journal of Engineering and Geology,1994,2(3):81-90.
11 FristonK J,FrithC D,LiddleP F,et al. Functional connectivity:The principal-component analysis of large (PET) data sets[J]. Journal of Cerebral Blood Flow and Metabolism:Official Journal of the International Society of Cerebral Blood Flow and Metabolism,1993,13(1):5-14.
12 ShresthaS,KazamaF.Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin,Japan[J].Environmental Modelling and Software,2007,22(4):464-475.
13 SalifuA,PetrusevskiB,GhebremichaelK,et al.Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana[J].Journal of Contaminant Hydrology,2012,140/141:34-44.
14 OttoM.Multivariate methods[M]//KellnerR,MermetJ M,OttoM,et al.Analytical Chemistry.Weinheim:Wiley VCH,1998.
15 向东进.实用多元统计分析[M].武汉:中国地质大学出版社,2005.
XiangDongjin.Applied Multivariate Statistical Analysis[M].Wuhan:China University of Geosciences Press,2009.
16 GuH Y,MaF S,GuoJ,et al.A spatial mixing model to assess groundwater aynamics affected by mining in a coastal fractured aquifer,China[J].Mine Water and the Environment,2018,37(2):405-420.
[1] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[2] 李炎, 王建国, 魏生云, 李国璋, 胡建, 王志男. 西藏德新铅多金属矿床地球物理与地球化学综合找矿研究[J]. 黄金科学技术, 2024, 32(3): 400-415.
[3] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[4] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[5] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[6] 马承,宋伊圩,孙彪,王占彬. 西秦岭岷礼成矿带地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(4): 489-499.
[7] 赵兴东,曾楠,陈玉民,魏慧,王成龙,侯成录,杜云龙,范纯超. 三山岛金矿井下无人开采区域中深孔落矿嗣后充填连续采矿工艺设计[J]. 黄金科学技术, 2021, 29(2): 200-207.
[8] 王善飞, 王康, 马凤山, 卢蓉. 三山岛金矿“三下”开采工艺优化与灾害防治[J]. 黄金科学技术, 2020, 28(5): 734-742.
[9] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[10] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[11] 曹家源,马凤山,郭捷,张国栋,李兆平. 海底倾斜矿体开采沉陷预测研究[J]. 黄金科学技术, 2019, 27(4): 522-529.
[12] 李威,马凤山,卢湘鹏,曹家源,郭捷. 基于三维地震探测的海底矿区地质结构分析[J]. 黄金科学技术, 2019, 27(4): 530-538.
[13] 段学良,马凤山,赵海军,郭捷,顾鸿宇,刘帅奇. 滨海矿山矿坑涌水源识别与混合比研究[J]. 黄金科学技术, 2019, 27(3): 406-416.
[14] 韩珂,安乐,杨兴科,刘淑文. 数学地质方法在南秦岭汉阴黄龙金矿中的应用[J]. 黄金科学技术, 2019, 27(1): 1-14.
[15] 唐卫东, 马庆, 王郅睿. 青海献礼山地区1/5万水系沉积物地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(3): 289-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!