img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (1): 72-79.doi: 10.11872/j.issn.1005-2518.2019.01.072

• • 上一篇    下一篇

基于有限云模型的深基坑安全性研究

黄仁东,刘赞赞*(),闫泽正   

  1. 1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2017-08-08 修回日期:2018-01-04 出版日期:2019-02-28 发布日期:2019-03-19
  • 通讯作者: 刘赞赞 E-mail:542782760@qq.com
  • 作者简介:黄仁东(1967-),男,湖南桂东人,教授,从事采矿工艺理论与技术方面研究工作。540248331@qq.com|刘赞赞(1992-),男,河南商丘人,硕士研究生,从事矿业安全技术与控制研究工作。542782760@qq.com
  • 基金资助:
    国家重点研发计划项目“深部高储能矿岩组孔超前致裂精准爆破技术”(编号:2017YFC0602902)资助

Research on the Safety of Deep Foundation Pit Based on Finite Cloud Model

Rendong HUANG,Zanzan LIU*(),Zezheng YAN   

  1. 1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2017-08-08 Revised:2018-01-04 Online:2019-02-28 Published:2019-03-19
  • Contact: Zanzan LIU E-mail:542782760@qq.com

摘要:

为降低基坑安全评价指标等级边界信息的随机性和模糊性给评价结果带来的不利影响,构建基于有限区间云理论的基坑安全综合评价模型。依据基坑安全性评价指标分类标准,计算出各评价指标隶属于不同分类等级的云数字特征,然后利用博弈论组合赋权法明确各评价指标的权重,并结合有限正向云发生器,得到评价对象的综合确定度,最后根据最大隶属原则确定基坑安全性等级。将该方法应用于工程实践中,并在评价过程中与传统云模型、可拓法进行对比分析。研究结果表明:运用该方法所获取的基坑安全性评价结果与可拓法评价结果一致,符合工程实际,且克服了传统云模型在处理指标值远离两端云期望值时的弊端,可为基坑安全评价研究提供一种新思路。

关键词: 深基坑, 有限云模型, 云数字特征, 博弈论, 组合权重, 有限云发生器, 确定度, 安全性等级

Abstract:

Deep foundation pit engineering is a large and complex system engineering,and its safety evaluation is influenced and controlled by many uncertainty factors,which has the characteristics of limited interval distribution of evaluation indexes and fuzzy grade boundaries. In order to reduce the adverse effects of randomness and ambiguity of boundary information of foundation pit safety evaluation index on the evaluation results,a comprehensive evaluation model of foundation pit safety based on finite interval cloud theory was constructed.According to industry standards and related research results,the evaluation index system and classification criteria of foundation pit safety were determined,and the cloud digital features of each evaluation index belonging to different classification levels were calculated.The cloud model was generated by using MATLAB programming software with the positive cloud generator of limited interval.According to the measured data of the sample,the degree of certainty of each security level was calculated.Analytic hierarchy process (AHP) is easy to calculate and the results are clear,but the process of judgment matrix subjectivity and consistency checking is complicated.Entropy weight method can determine the weight according to the degree of index variation,which can avoid the interference of human factors.However,it strictly follows the mathematical rules and often ignores the intentions of decision makers.Therefore,after considering the advantages and disadvantages of two methods,the game theory was used to optimizes and fuses the weights obtained by AHP and entropy weight method.Considering the subjective and objective factors comprehensively,the combination weights of each evaluation index for foundation pit safety were defined.The comprehensive determination degree of the evaluation object was obtained by combining the single factor determination degree of the index value belonging to each safety grade.Finally,the safety grade of foundation pit was determined according to the principle of maximum membership.This method was applied to engineering practice,and compared with traditional cloud model and extension method in the evaluation process.The results show that the model has good feasibility and validity in the study of foundation pit safety evaluation.The results obtained by this method are consistent with those obtained by extension method,which is in line with engineering practice.It overcomes the drawbacks of traditional cloud model when the index values are far from the expected values of both ends of the cloud.It can also provide a new idea for the study of foundation pit safety evaluation.

Key words: deep foundation pit, finite cloud model, cloud digital characteristics, game theory, combination weight, finite cloud generator, degree of certainty, safety level

中图分类号: 

  • TU753

图1

基坑安全性研究流程图"

表1

深基坑安全性评价指标分类标准"

监测指标 安全性评价内容 安全性评价
指标控制标准 Ⅰ级(危险) Ⅱ级(注意) Ⅲ级(安全)
墙体变形 墙体变形与开挖深度之比 F 1 = F 1 > 0.7 % 0.2 % F 1 0.7 % F 1 < 0.2 %
墙体应力 墙体弯矩 F 2 = F 2 < 0.8 0.8 F 2 1.0 F 2 > 1.0
支撑轴力 容许轴力 F 3 = F 3 < 0.8 0.8 F 3 1.0 F 3 > 1.0
基底隆起 隆起量与开挖深度之比 F 4 = F 4 > 0.2 % 0.04 % F 4 0.2 % F 4 < 0.04 %
沉降值 沉降值与开挖深度之比 F 5 = F 5 > 0.2 % 0.04 % F 5 0.2 % F 5 < 0.04 %

图2

各指标安全性评价的云模型图"

表2

基坑安全性指标监测数据"

序号 地下连续墙水平位移/mm 地表沉降/mm 基底隆起/mm 支撑轴力/kN 地下连续墙弯矩/(kN·m)
1 16.58 28.75 11.91 2 774.5 1 778.4
2 16.83 32.25 12.76 2 980.0 1 882.9
3 17.21 32.89 15.87 3 129.3 2 061.5
4 18.30 36.63 18.83 3 095.7 2 203.2
5 20.35 39.50 17.90 3 226.5 2 302.0
6 22.50 42.26 20.15 3 415.7 2 352.5
7 23.87 44.51 18.01 3 569.2 2 446.1
8 24.41 46.72 19.65 3 609.8 2 507.5

表3

评价指标安全性等级"

评价指标 确定度(有限/传统) 本文方法 传统云模型 可拓学[2]方法
危险(Ⅰ级) 注意(Ⅱ级) 安全(Ⅲ级)
地下连续墙水平位移 0.0004/0.0004 0.2849/0.2849 0.9874/0.9874
地表沉降 0.6532/0.6532 0.3586/0.3586 0.0000/0.0000
基地隆起 0.0212/0.0212 0.9152/0.9152 0.0001/0.0001
支撑轴力 0.0000/0.0000 0.0000/0.0000 1.0000/0.0000 -
地下连续墙弯矩 0.0000/0.0000 0.0000/0.0000 1.0000/0.0000 -

表4

基坑安全评价指标权重值"

评价指标 地下连续墙水平位移 地表沉降 基底隆起 支撑轴力 地下连续墙弯矩
AHP权值 ω 1 0.1762 0.2951 0.2623 0.1680 0.0984
熵权权值 ω 2 0.2243 0.2719 0.3057 0.0706 0.1275
博弈综合权值 ω 0.2229 0.2726 0.3045 0.0734 0.1266

表5

基坑安全性研究结果及对比"

安全等级

危险

(Ⅰ级)

注意

(Ⅱ级)

安全

(Ⅲ级)

评价结果
综合确定度(本文方法) 0.1846 0.4399 0.4201
关联度[2](可拓学方法) -0.3838 +0.0354 -0.0269
1 谢才军,林贤根 .基坑变形监测与VB编程[M].浙江:浙江大学出版社,2012.
Xie Caijun , Lin Xiangen .Foundation Pit Deformation Monitoring and VB Programming[M].Zhejiang:Zhejiang University Press,2012.
2 魏新江,邓志秋,魏纲,等 .可拓评价方法和熵值法相结合的基坑安全评价[J].岩土工程学报,2008,30(10):672-676.
Wei Xinjiang , Deng Zhiqiu , Wei Gang ,et al .Safety evaluation of foundation pits by extension assessment method combined with entropy law[J].Chinese Journal of Geotechnical Engineering,2008,30(10):672-676.
3 吴贤国,沈梅芳,覃亚伟,等 .基于变权和物元原理的地铁基坑施工安全风险评价[J].武汉大学学报,2016,49(6):879-885.
Wu Xianguo , Shen Meifang , Qin Yawei ,et al .Risk evaluation of subway foundation pit based on variable-weight and matter-element theory[J].Engineering Journal of Wuhan University,2016,49(6):879-885.
4 傅志峰,罗晓辉,李杰,等 .基于安全预警分级的基坑安全模糊评价研究[J].岩土力学,2011,32(12):3694-3700.
Fu Zhifeng , Luo Xiaohui , Li Jie ,et al .Study of fuzzy evaluation of foundation pit safety based on classification of safety early warning [J].Rock and Soil Mechanics,2011,32(12):3694-3700.
5 胡强,刘宁,李锦辉 .基坑安全稳定评判的干扰能量法[J].水利水电科技进展,2004,24(3):27-30.
Hu Qiang , Liu Ning , Li Jinhui .Interference energy method to the security and stability evaluation of foundation pit[J].Advances in Science and Technology of Water Resources,2004,24(3):27-30.
6 王建仁,张福林 .基坑稳定的人工神经网络预测[J].建筑技术开发,2001,28(2):10-13.
Wang Jianren , Zhang Fulin .Evaluation the stability of deep foundation pit through artificial neural network[J].Building Technique Development,2001,28(2):10-13.
7 柳旻,宋彦臣 .基于尖点突变理论与灰色理论的基坑安全评价[J].工程与建设,2011,25(1):96-98.
Liu Min , Song Yanchen .Based on the point mutation theory and the gray theory foundation pit safety evaluation[J].Engineering and Construction,2011,25(1):96-98.
8 郑刚,朱合华,刘新荣,等 .基坑工程与地下工程安全及环境影响控制[J].土木工程学报,2016,49(6):1-24.
Zheng Gang , Zhu Hehua , Liu Xinrong ,et al .Control of safety of deep excavations and underground engineering and its impact on surrounding environment[J].China Civil Engineering Journal,2016,49(6):1-24.
9 汪明武,朱其坤,赵奎元,等 .基于有限区间联系云的围岩稳定性评价模型[J].岩土力学,2016,37(1):140-144.
Wang Mingwu , Zhu Qikun , Zhao Kuiyuan ,et al .A novel cloud model coupled with connection number based on finite intervals for evaluation of surrounding rock stability[J].Rock and Soil Mechanics,2016,37(1):140-144.
10 李建,汪明武,徐鹏,等 .基于云模型的围岩稳定性分类[J].岩土工程学报,2014,36(1):84-86.
Li Jian , Wang Mingwu , Xu Peng ,et al .Classification of stability of surrounding rock using cloud model[J].Chinese Journal of Geotechnical Engineering,2014,36(1):84-86.
11 周国强,王雪青,刘锐 .一种基于改进云模型的信用评价方法[J].系统工程,2013,31(4):60-66.
Zhou Guoqiang , Wang Xueqing , Liu Rui .A credit evaluation method based on improved cloud model[J].Systems Engineering,2013,31(4):60-66.
12 杨光,刘敦文,褚夫蛟,等 .基于云模型的隧道塌方风险等级评价[J].中国安全生产科学技术,2015,11(6):95-101.
Yang Guang , Liu Dunwen , Chu Fujiao ,et al .Evaluation on risk grade of tunnel collapse based on cloud model[J].Journal of Safety Science and Technology,2015,11(6):95-101.
13 赵国彦,梁伟章,洪昌寿 .采空区稳定性的改进云模型二维评判[J].中国安全科学学报,2015,25(10):102-108.
Zhao Guoyan , Liang Weizhang , Hong Changshou .Improved cloud model for two dimensional stability evaluation of goaf[J].China Safety Science Journal,2015,25(10):102-108.
14 周科平,林允,胡建华 .基于熵权—正态云模型的岩爆烈度分级预测研究[J].岩土力学,2016,37(1):596-602.
Zhou Keping , Lin Yun , Hu Jianhua .Grading prediction of rockburst intensity based on entropy and normal cloud model[J].Rock and Soil Mcchanics,2016,37(1):596-602.
15 上海岩土工程勘察设计研究院(集团)有限公司 .基坑工程施工监测规程:DG/TJ08-2001-2006[S].上海:上海岩土工程勘察设计研究院(集团)有限公司,2006.
SGIDI Engineering Consulting(Group)Co.,Ltd . Foundation pit engineering construction monitoring procedures:DG/TJ08-2001-2006.[S].Shanghai:SGIDI Engineering Consulting(Group)Co.,Ltd.,2006.
16 徐中华,王卫东 .深基坑变形控制指标研究[J].地下空间与工程学报,2010,6(3):619-626.
Xu Zhonghua , Wang Weidong .Deformation control criteria of deep excavations[J].Chinese Journal of Underground Space and Engineering,2010,6(3):619-626.
17 邓宗国 .抗剪强度指标对受锚基坑边坡稳定性的影响分析[J].煤炭技术,2010,29(10):123-125.
Deng Zongguo .Analysis on stability of anchored pit foundation slope based on index of shear strength[J].Coal Technology,2010,29(10):123-125.
18 刘建航 .软土市政地下工程施工技术手册[M].上海:上海市政工程管理局,1990.
Liu Jianhang .Soft Soil Municipal Underground Engineering Construction Technical Manual[M].Shanghai:Shanghai Municipal Engineering Administration,1990.
19 Singh R P , Nachtnebel H P .Analytical hierarchy process(AHP) application for reinforcement of hydropower strategy in Nepal[J].Renewable and Sustainable Energy Reviews,2016,52(11):43-58.
20 徐雅玺,王红岩 .基于AHP-熵权法的机场服务质量云模型评价[J].价值工程,2016,2(4):7-10.
Xu Yaxi , Wang Hongyan .Evaluation of airport service quality cloud model based on AHP-Entropy weight method[J].Value Engineering,2016,2(4):7-10.
21 路遥,徐林荣,陈舒阳,等 .基于博弈论组合赋权的泥石流危险度评价[J].灾害学,2014,29(1):194-200.
Lu Yao , Xu Linrong , Chen Shuyang ,et al .Combined weight method based on game theory for debris flow hazard risk assessment[J].Journal of Catastrophology,2014,29(1):194-200.
22 杨太华,郑庆华 .复兴东路隧道工程浦东岸边段深基坑开挖同步检测设计及信息化施工效果分析[J].交通科技与经济,2004,26(6):6-9.
Yang Taihua , Zheng Qinghua .Analysis on on-time supervising design and information construction effect for deep-base pit-digging in tunnel engineering of Fuxing Dong Road[J].Technology and Economy in Areas of Communications,2004,26(6):6-9.
[1] 李欢,明俊桦,石晓凤. 基于博弈论和模糊综合评判的锌冶炼企业清洁生产评价[J]. 黄金科学技术, 2018, 26(5): 635-646.
[2] 陈毅,陈建宏*. 基于博弈论与相对熵TOPSIS的采矿方法优选[J]. 黄金科学技术, 2017, 25(6): 75-82.
[3] 罗永红,张相钰,韦真周,陶进芳,覃辉平,陈曼,林凌宇. 活性炭富集原子吸收分光光度法测定矿石中金的不确定度评定[J]. 黄金科学技术, 2015, 23(5): 77-82.
[4] 袁晓,王李管*,刘晓明,彭平安. 基于改进未确知测度理论的矿床开采方式优选[J]. 黄金科学技术, 2015, 23(5): 72-76.
[5] 霍成胜,王成栋,孟军海,白国龙. 基于灰色时序组合模型的基坑监测预测[J]. 黄金科学技术, 2014, 22(5): 79-83.
[6] 刘淑亮,刘玖芬,张汝生. 原子吸收法测定金矿石中金的不确定度评定[J]. 黄金科学技术, 2013, 21(2): 40-44.
[7] 张凤霞,刘化峰,王岳,燕菲. ICP-AES法测定金饰品中铜、铁、锌含量的不确定度评定[J]. 黄金科学技术, 2012, 20(5): 67-70.
[8] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68-71.
[9] 聂凤莲, 王丽华, 张蜀冀, 陈雪, 陈占生. 金标准溶液配制的不确定度评定[J]. J4, 2009, 17(3): 56-59.
[10] 杨明荣, 牟长贤. 活性炭富集分离—碘量法测定金矿石中金的不确定度评定[J]. J4, 2009, 17(2): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!