img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (4): 698-706.doi: 10.11872/j.issn.1005-2518.2023.04.183

• Metallurge and Equipment • Previous Articles    

Key Technology Research and Industrial Application of SART Process in the Treatment of Cyanide Gold Leaching Circulating Liquid

Hu QIAN1(),Jing SUI2,Yanling ZHAO3,Zhongmin XU1()   

  1. 1.Zhaojin Mining Co. , Ltd. , Zhaoyuan 265400, Shandong, China
    2.Shandong Meihuate Water Treatment Technology Co. , Ltd. , Zhaoyuan 265499, Shandong, China
    3.Hongyang Three Mines Coal Preparation Plant, Shenyang Coking Coal Co. , Ltd. , Shenyang 111307, Liaoning, China
  • Received:2022-12-19 Revised:2023-06-16 Online:2023-08-30 Published:2023-09-20
  • Contact: Zhongmin XU E-mail:1380131@stu.neu.edu.cn;xzm89@163.com

Abstract:

In order to realize the comprehensive recovery of valuable metals in the cyanide circulating liquid,the comparative test and analysis of acidification and SART processes(Vulcanization-Acidification-Recycling-Concentration Process) was conducted,and the application of SART process was finally determined.Then the circulating liquid generated in the cyanide gold extraction process of the domestic gold industry was purified for the first time,and the step-by-step recovery and separation and precipitation of zinc and copper in the liquid phase of the cyanidation cycle were realized.47.45% zinc mud and 54.38% copper sludge were produced respectively,and recovered with high-grade precipitate products.And the weakly complexed cyanide is converted into free sodium cyanide and then returned to the production system for recycling,thereby reducing the cost of the cyanidation process.The application of SART process not only realizes the recovery of valuable metals,reduces the cost,but also solves the employment problem,reduces the pressure of subsequent smelting and environmental protection,and achieves good economic,environmental and social benefits.

Key words: SART process, cyanide circulating fluid, copper mud, zinc sludge, sodium cyanide

CLC Number: 

  • TF831

Fig.1

Flow chart of SART process"

Table 1

Comparison of indexes of acidification and SART process"

指标名称酸化法SART工艺
投资/万元10 0003 500
建筑面积/m25 0001 400
运行成本元仅药剂成本78.79元/t综合成本25元/t
铜回收率/%9899.8
铜泥品位/%2055.7
锌回收率/%无法回收99.9
投资回收期较长
安全环保性HCN先以气体形式挥发再通过碱液吸收,有HCN气体泄露的安全风险在液相中回收NaCN,无有害气体产生

Fig.2

Layout diagram of SART process in Jinchiling gold mine"

Table 2

Water quality analysis of cyanide circulation liquid"

分析项目质量浓度/(mg·L-1分析项目质量浓度/(mg·L-1
Ag0.19CNtotal10 230
Cu2 340Fe156
Zn1 131CO-
CNwad1 540

Table 3

Main element composition of lean liquid before and after treatment by 3R-O process"

项目产生量AuZnCu
原液1 000 mL-1 131 mg/L2 340.00 mg/L
酸化液1 000 mL-1 020 mg/L46.88 mg/L
酸化渣10.50 g/L-1.05%20.09%

Table 4

Neutralizes test results(mg/L)"

溶液名称CNTCNfCuFePbZn
酸化液86.985.946.881.04<0.121 020
中和液73.270.546.321.04<0.121 010

Table 5

Treatment effect of metal elements in lean liquid by SART process"

试验

编号

金属

元素

进水

/(mg·L-1

锌区出水

/(mg·L-1

铜区出水

/(mg·L-1

中和区出水

/(mg·L-1

总回收率/%

SART

试验1

Cu2 3402 360464498.10
Zn1 1311811.199.90

SART

试验2

Cu2 3402 390444298.20
Zn1 1311811.299.90

SART

试验3

Cu2 3402 31064.899.80
Zn1 1312141.399.90

Table 6

Cyanide concentration of lean liquid before and after treatment by SART process"

试验编号

进水总氰

/(mg·L-1

中和区出水总氰

/(mg·L-1

中和区出水游离氰/(mg·L-1氰化物总回收率/%
SART试验110 2309 2899 26390.80
SART试验210 2309 4229 40692.10
SART试验310 2309 3609 31591.50

Table 7

Content analysis results of recovery copper mud and zinc mud by SART process"

试验编号铜泥品位/%锌泥品位/%
CuZnCuZn
SART试验175.40.50.755.1
SART试验275.50.30.653.3
SART试验376.10.60.454.2

Table 8

Statistics on NaCN consumption of second cyanide plant from 2020 to 2022"

年份NaCN实际消耗总量/t处理矿量/t

NaCN单耗(100%)

/(kg·t-1

相比2020年

减少量/t

实际回收NaCN

(100%)/t

合计2 191.8
20201 557.31249 1706.25
2021885.76256 0003.46671.55989.2
2022903.04238 9003.78654.271 202.6

Table 9

Comparison test results of lean liquor cyanidation leaching before and after purification"

样品细度(-400目)占比/%

NaCN质量浓度

/?

CaO质量浓度/?时间/h原矿金品位/(g·t-1渣金品位/(g·t-1金回收率/%NaCN添加量/(kg·m-3CaO量/(kg·t-1备注
试验1-192.040~484.0~6.44066.050.9098.642.79429.06净化前
试验1-292.048~604.0~6.44066.050.9098.6407.93净化后
试验3-190.736~494.0~6.44039.640.8497.882.862318.00净化前
试验3-291.043~544.0~6.44039.640.8097.981.244018.00净化后
试验4-192.240~484.0~6.44045.700.9997.833.252318.00净化前
试验4-292.440~484.0~6.44045.700.9597.921.208518.00净化后

Table 10

Quality comparison of zinc mud and standard product"

质量要求氰化锌泥标准锌泥分析数据
有价元素Zn(不小于)/%4047.45
杂质元素As(不大于)/%0.4<0.01
范围供炼锌用供炼锌用
水分小于30%23.32%
粒度通过74 μm标准筛的筛下物不小于50%-
外观不应混入外来夹杂物无外来夹杂物

Table 11

Quality comparison of copper mud and standard product"

质量要求氰化铜泥标准铜泥分析数据
有价元素Cu(不小于)/%1854.38
杂质元素As(不大于)/%0.4<0.01
范围供炼铜用供炼铜用
水分小于50%21.72%
粒度通过74 μm标准筛的筛下物不小于50%-
外观不应混入外来夹杂物无外来夹杂物

Table 12

Calculation results of economic benefit for SART process"

项目规模产品指标产品价格或成本总价/万元
单位数值单位数值单位数值
合计+2 690.5
锌泥产品收益半成品/t662产品含量/%47.45成品单价/(元·t-122 000+691.1
铜泥产品收益半成品/t869产品含量/%54.38成品单价/(元·t-168 000+3 213.4
氰化钠产品收益半成品/t2 191.8产品含量/%100.00成品单价/(元·t-111 000+2 410.1
氰化回收率提高产生效益投料金属量/kg25 000提高百分比/%0.06金价(元/g)420+630.0
节约废水处理费用减少废水量/t7 306--处理成本/(元·t-180+58.4
成本费用循环液量/m31 725 000--单位成本/(元·m-325-4 312.5
Chen Huajin, Li Fangshi,2005.Progress in the treatment of cyanide-contained waste water[J].Jiangsu Chemical Industry,33(1):39-43.
China Gold Association,2017. Cyanide Copper Mud:T/C [S].Beijing:China Gold Association.
China Gold Association,2021. Cyanide Zinc Mud:T/C [S].Beijing:China Gold Association.
Gao Tengyue, Liu Kuiren, Han Qing,et al,2015.Study on electrodeposition recovery of copper and cyanide from cyanide-containing wastewater[J].Journal of Northeastern University(Natural Science),36(1):81-85.
Hu Yangjia, He Zheng, Zhao Zhiqiang,et al,2018.Development of non-cyanide gold leaching technology:Review and application prospects[J].Gold,39(4):53-58.
Khosravi R, Azizi A, Ghaedrahmati R,et al,2017.Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell—Optimization,kinetics and equilibrium studies[J].Journal of Industrial and Engineering Chemistry,54:464-471.
Kondos P D, Deschênes G, Morrison R M,1995.Process optimization studies in gold cyanidation[J].Hydrometallurgy,39(1/2/3):35-38.
Lan Xinzhe, Zhang Conghui, Dang Xiao’e,et al,1999.Development of cyanide recovery and recycling technology from gold leaching tailings[J].Gold Science and Technology,7(3):40-45.
Li Qian, Dong Siyu, Xu Rui,et al,2020.Gold extraction technology for gold ores and its research progress[J].Gold,41(9):86-101.
Li Yifan, Song Yonghui, Zhou Min,et al,2022.Solvent extraction of metal cyanide complex ions in cyanidation gold extraction wastewater[J].The Chinese Journal of Nonferrous Metals,32(2):536-544.
Molleman E, Dreisinger D,2002.The treatment of copper-gold ores by ammonium thiosulfate leaching[J].Hydrometallurgy,66(1/2/3):1-21.
Niu Guiqiang,2009.Technical reformation and production practice of cyanide process[J].China Mine Engineering,38(5):30-33.
Patil Y B, Paknikar K M,2000.Development of a process for biodetoxification of metal cyanides from waste waters[J].Process Biochemistry,35(10):1139-1151.
Qian Xinming, Honghui Lü, Guo Xiangdong,1997.Study on reutilization of resin adsorbing tailing liquid[J].Gold,18(6):51-53.
Shen Xiande,2014.Debugging and evaluation of treatment of pregnant solutions from heap leaching in Zijinshan gold mine by acidification-sulphidization process[J].Gold,35(11):76-80.
Sun Zhaoxue,2011.Practical Manual of Precious Metal Production Technology[M].Beijing:Metallurgical Industry Press.
Tan Xifa,2014.Pilot test study on treating adsorption lean solution of Zijinshan gold mine by acidification-sulphidization process[J].Gold,35(10):74-78.
Wang Jianzheng, Kong Lingqiang, Wang Minjie,et al,2001.Experimental research on zinc and copper removal from cyanide barren solution and its recycled leaching utilization[J].Gold,42(5):79-81,86.
Wang Qianru,1994.Rational utilization of poor liquid to increase economic benefit[J].Conservation and Utilization of Mineral Resources,(5):45-48.
White D M, Pilon T A, Woolard C,2000.Biological treatment of cyanide containing wastewater[J].Water Research,34(7):2105-2109.
Wu Zaijiu,2013.Technical study of high copper-bearing cyanide barren solution[J].Nonferrous Metals Engineering and Research,(3):18-20.
Xie Minxiong, Li Zhengyao, Sun Wenbo,2010. Necessity and comprehensive assessment of lean solution processing project[J].Gold Science and Technology,18(6):73-77.
Xu Tianyun, Xu Zhengchun,1985.Cyaniding and Smelting of Gold[M].Shenyang:Shenyang Gold College.
Yang Jing, Zhang Yali, Yu Xianjin,et al,2012.Research status on treating methods of cyanide waste solution[J].Hydrometallurgy of China,31(5):278-280.
Yu Xianjin, Zhang Yali, Fang Tao,et al,2014.Process and kinetics of copper adsorption from cyaniding barren solution with ion exchange resin[J].Nonferrous Metals(Extractive Metallurgy),(5):8-11.
Zhang Manman, Feng Zhanli, Wang Junqiang,et al,2019.Research progress of cyanide-contained wastewater treatment in gold hydrometallurgy[J].Chemical Industry and Engineering,36(1):2-9.
Zhong Chongbo, Wang Chenggong, Chen Bingchen,2001.Review of the dangers of cyanides and their treatment methods[J].Metal Mine,6(5):44-47.
陈华进,李方实,2005.含氰废水处理方法进展[J].江苏化工,33(1):39-43.
高腾跃,刘奎仁,韩庆,等,2015.电沉积回收氰化尾液中铜和氰化物的研究[J].东北大学学报(自然科学版),36(1):81-85.
胡杨甲,贺政,赵志强,等,2018.非氰浸金技术发展现状及应用前景[J].黄金,39(4):53-58.
兰新哲,张聪惠,党晓娥,等,1999.提金氰化物回收循环再用技术新进展[J].黄金科学技术,7(3):40-45.
李骞,董斯宇,许瑞,等,2020.金矿提金技术及其研究进展[J].黄金,41(9):86-101.
李一凡,宋永辉,周民,等,2022.氰化提金废水中金属氰络合离子的溶剂萃取[J].中国有色金属学报,32(2):536-544.
牛桂强,2009.氰化工艺技术改造与生产实践[J].中国矿山工程,38(5):30-33.
钱新明,吕虹辉,郭向东,1997.树脂吸附尾液再利用的应用研究[J].黄金,18(6):51-53.
沈贤德,2014.酸化—硫化沉淀工艺处理紫金山金矿堆浸贵液工业调试及评价[J].黄金,35(11):76-80.
孙兆学,2011.贵金属生产技术实用手册[M].北京:冶金工业出版社.
谭希发,2014.酸化—硫化沉淀工艺处理紫金山金矿吸附贫液扩大试验研究[J].黄金,35(10):74-78.
王建政,孔令强,王敏杰,等,2021.氰化贫液脱除锌铜与循环浸出利用试验研究[J].黄金,42(5):79-81,86.
王倩儒,1994.合理利用贫液提高经济效益[J].矿产保护与利用,(5):45-48.
吴在玖,2013.高含铜氰化贫液处理工艺研究[J].有色冶金设计与研究,(3):18-20.
谢敏雄,李政要,孙文波,2010.氰化贫液除杂的必要性及其综合评估[J].黄金科学技术,18(6):73-77.
徐天允,徐正春,1985.金的氰化与冶炼[M].沈阳:沈阳黄金专科学校.
杨静,张亚莉,于先进,等,2012.氰化贫液处理方法研究现状[J].湿法冶金,31(5):278-280.
于先进,张亚莉,房涛,等,2014.离子交换法处理氰化贫液中铜的工艺及动力学[J].有色金属(冶炼部分),(5):8-11.
张曼曼,冯占立,王军强,等,2019.黄金湿法冶炼含氰废水处理研究进展[J].化学工业与工程,36(1):2-9.
仲崇波,王成功,陈炳辰,2001.氰化物的危害及其处理方法综述[J].金属矿山,6(5):44-47.
中国黄金协会,2017. 氰化铜泥:T/C [S].北京:中国黄金协会.
中国黄金协会,2021. 氰化锌泥:T/C [S].北京:中国黄金协会.
[1] Chaocong ZENG,Guangsheng ZHANG,Weirong WU,Wanfu HUANG,Xindong LI,Zekai WANG,Guanfa LIU. Experimental Study on Recovery of Gold from Ammonium Thiocyanate Leaching Solution by Electrodeposition [J]. Gold Science and Technology, 2023, 31(2): 349-358.
[2] Shixiong GAO,Guobao CHEN,Hongying YANG,Pengcheng MA. Research Progress of Antimony Removal Technology by Pretreatment of Antimony-bearing Gold Ore [J]. Gold Science and Technology, 2020, 28(6): 792-799.
[3] Xiangyu SONG,Zhen ZHANG,Junyu WANG,Ronggai LI. Research Status and Prospect of Gold Extraction by the Alkaline Oxidation of Gold-bearing Sulfide Ore [J]. Gold Science and Technology, 2020, 28(6): 940-954.
[4] Li XIAO,Yongliang WANG,Peng QIAN,Jian DING,Shufeng YE. Advances in Non-cyanide Process for Gold Smelting [J]. Gold Science and Technology, 2019, 27(2): 292-301.
[5] SONG Yan, YANG Hongying, TONG Linlin, MA Pengcheng, JIN Zhenan. Experimental Study on Bacterial Oxidation-Cyanidation of a Complex Re-fractory Gold Mine in Gansu Province [J]. Gold Science and Technology, 2018, 26(2): 241-247.
[6] ZHAO Hefei,YANG Hongying,ZHANG Qin,TONG Linlin,JIN Zhenan,CHEN Guobao. Research Status of Factors Influence on Leaching of Gold with Thiosulfate [J]. Gold Science and Technology, 2018, 26(1): 105-114.
[7] DUAN Minjing,LIANG Changli,XU Baoquan,CHEN Lingkang. Selective Precipitation of Iron from Bio-oxidation Liquid of Gold Extraction [J]. Gold Science and Technology, 2017, 25(6): 121-126.
[8] DANG Xiao’e,WANG Lu,MENG Yusong,SONG Yonghui,Lü Chaofei. Performance of an Environmental Gold Leaching Agent and Activated Carbon Adsorption Characteristics of Gold in the Liquid [J]. Gold Science and Technology, 2017, 25(6): 114-120.
[9] LIU Qian,YANG Hongying,TONG Linlin. Screening of High Correlation Variables of Elemental Carbon Degradation by Phanerochaete chrysosporium in Carbonaceous Gold Ores [J]. Gold Science and Technology, 2017, 25(5): 140-144.
[10] SONG Yonghui,YAO Di,ZHANG Shan,TIAN Yuhong,LAN Xinzhe. Study on the Treatment of Cyanide Wastewater by Three-dimensional Electrode [J]. Gold Science and Technology, 2017, 25(5): 116-121.
[11] YANG Wei,WANG Gang,CAO Huan,ZHANG Kai. Effect of Roasting-Acid Leaching on Gold and Silver Leaching Rate of Gold Concentrate Containing Copper [J]. Gold Science and Technology, 2017, 25(5): 122-126.
[12] ZHANG Yuxiu,GUO Degeng,LI Yuanyuan,ZHANG Guangji. Variation of Arsenic Valence and Its Effect on Bacteria During Biooxidation of Refractory Gold Concentrate Containing Arsenic [J]. Gold Science and Technology, 2017, 25(4): 106-112.
[13] DANG Xiao’e,MENG Yusong,WANG Lu,SONG Yonghui,LV Chaofei,YUN Yaxin. Application Status and Development Trend of Two New Gold Extraction Technologies [J]. Gold Science and Technology, 2017, 25(4): 113-121.
[14] WANG Shuo. Experimental Study on Gold Leaching Process of a Gold Mine in Gansu Province [J]. Gold Science and Technology, 2017, 25(4): 122-127.
[15] SHENG Yong,LIU Tingyao,HAN Lihui,LIU Qing. Numerical Simulation of Solid-Liquid Mixing in Stirred Tank During Decyanation Process of Gold-Containing Wastewater [J]. Gold Science and Technology, 2016, 24(5): 108-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN An-Zhi, DIAO Yu-Suo, XIAO Zhen, QING Min, WEI Feng, JIU Zhen-Beng. [J]. J4, 2010, 18(4): 27 -32 .
[2] LIU Yuan-Hua, YANG Gui-Cai, ZHANG Lun, JI Jin-Zhong, LI Wen-Liang. Petrology and Geochemistry of Granites in Yangshan Ultra-large Gold Deposit,West Qinling[J]. J4, 2010, 18(6): 1 -7 .
[3] LIN Hongyong. Geological Characteristics,Au-mineralization,and Metallogenesis of the Qixinghe Gold Deposit,Shuangyashan,Jilin[J]. J4, 2008, 16(3): 26 -29 .
[4] HU Qin-Xia, LI Jian-Zhong, YU Guang-Meng, XIE Yan-Fang, ZHANG Ku-Xiao. Discussion on Gold Ore Point of Bailongjiang Metallogenic Belt[J]. J4, 2010, 18(3): 51 -53 .
[5] HUANG Jun, WU Jiafu, LU RuKuai , XIA Liyuan. [J]. J4, 2010, 18(4): 1 -5 .
[6] ZHANG Huaquan,ZHANG Weixin,LI Hongjie. Ore—-formation Conditions and Exploration Orientation of the Gold Deposite in Jiaolai Basin,Shandong Province[J]. J4, 2008, 16(2): 12 -17 .
[7] L IU J ian, FAN Manhua,DENG Zhigao, ZHANG Qingsong, ZHENG Chengying. Exper imenta l Study on Comprehensive Shr inkageMethod in Na lin Gold Deposit[J]. J4, 2008, 16(6): 48 -50 .
[8] XU Shu-Ping, YANG Li-Qiang, GAO Bang-Fei. The Types of Gold and Ore-searching Direction in Western Shandong Province[J]. J4, 2007, 15(5): 18 -23 .
[9] ZANG Enguang,YI Cunchang,ZHANG Chunxiao. The Geologic Feature and the Clue for Prospecting of Huana Conglomerate Gold Deposit in Heilongjiang[J]. J4, 2008, 16(2): 29 -32 .
[10] HU Qin-Xia, SUN Ban, GANG Yu, LI Chu-Fang, ZHANG Ku-Xiao. Geological Features and Genesis of Beijinshan Gold Deposit,Gansu Province[J]. J4, 2010, 18(6): 18 -21 .